Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
def my_function(keywords, product_info):
|
| 7 |
B_SYS, E_SYS = "<<SYS>>", "<</SYS>>"
|
| 8 |
B_INST, E_INST = "[INST]", "[/INST]"
|
| 9 |
B_in, E_in = "[Product Details]", "[/Product Details]"
|
|
@@ -11,8 +15,11 @@ def my_function(keywords, product_info):
|
|
| 11 |
prompt = f"""{B_INST} {B_SYS} You are a helpful, respectful and honest assistant for ecommerce product title creation. {E_SYS}
|
| 12 |
Create a SEO optimized e-commerce product title for the keywords:{keywords.strip()}
|
| 13 |
{B_in}{product_info}{E_in}\n{E_INST}\n\n{B_out}"""
|
| 14 |
-
predictions = pipe(prompt)
|
| 15 |
-
output=((predictions[0]['generated_text']).split(B_out)[-1]).strip()
|
|
|
|
|
|
|
|
|
|
| 16 |
return (output)
|
| 17 |
|
| 18 |
# Process the inputs (e.g., concatenate strings, perform calculations)
|
|
@@ -21,9 +28,9 @@ def my_function(keywords, product_info):
|
|
| 21 |
|
| 22 |
# Create the Gradio interface
|
| 23 |
interface = gr.Interface(fn=my_function,
|
| 24 |
-
inputs=["text", "text"],
|
| 25 |
outputs="text",
|
| 26 |
title="SEO Optimised Title Suggestion",
|
| 27 |
description="Enter Keywords and Product Info:")
|
| 28 |
|
| 29 |
-
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
# from transformers import pipeline
|
| 4 |
+
# pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0")
|
| 5 |
+
API_URL = "https://api-inference.huggingface.co/models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0"
|
| 6 |
+
def query(payload, api_token):
|
| 7 |
+
response = requests.post(API_URL, headers={"Authorization": f"Bearer {api_token}"}, json=payload)
|
| 8 |
+
return response.json()
|
| 9 |
|
| 10 |
+
def my_function(api_token, keywords, product_info):
|
|
|
|
| 11 |
B_SYS, E_SYS = "<<SYS>>", "<</SYS>>"
|
| 12 |
B_INST, E_INST = "[INST]", "[/INST]"
|
| 13 |
B_in, E_in = "[Product Details]", "[/Product Details]"
|
|
|
|
| 15 |
prompt = f"""{B_INST} {B_SYS} You are a helpful, respectful and honest assistant for ecommerce product title creation. {E_SYS}
|
| 16 |
Create a SEO optimized e-commerce product title for the keywords:{keywords.strip()}
|
| 17 |
{B_in}{product_info}{E_in}\n{E_INST}\n\n{B_out}"""
|
| 18 |
+
# predictions = pipe(prompt)
|
| 19 |
+
# output=((predictions[0]['generated_text']).split(B_out)[-1]).strip()
|
| 20 |
+
output = query({
|
| 21 |
+
"inputs": prompt,
|
| 22 |
+
},api_token)
|
| 23 |
return (output)
|
| 24 |
|
| 25 |
# Process the inputs (e.g., concatenate strings, perform calculations)
|
|
|
|
| 28 |
|
| 29 |
# Create the Gradio interface
|
| 30 |
interface = gr.Interface(fn=my_function,
|
| 31 |
+
inputs=["text", "text", "text"],
|
| 32 |
outputs="text",
|
| 33 |
title="SEO Optimised Title Suggestion",
|
| 34 |
description="Enter Keywords and Product Info:")
|
| 35 |
|
| 36 |
+
interface.launch()
|