Spaces:
Sleeping
Sleeping
File size: 7,352 Bytes
d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 d25d261 7988190 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import streamlit as st
# --- App Configuration ---
st.set_page_config(
page_title="Basic Python Sentiment Analyzer",
page_icon="βοΈ",
layout="centered",
initial_sidebar_state="auto"
)
# --- Define Sentiment Keywords (Pure Python Logic) ---
# These are very basic lists for demonstration purposes.
# A real-world rule-based system would be much more extensive and nuanced.
POSITIVE_KEYWORDS = [
"good", "great", "excellent", "amazing", "fantastic", "love", "happy",
"joy", "wonderful", "positive", "awesome", "beautiful", "perfect", "like",
"enjoy", "best", "super", "nice", "pleased", "delightful", "brilliant"
]
NEGATIVE_KEYWORDS = [
"bad", "terrible", "horrible", "awful", "hate", "sad", "unhappy",
"poor", "negative", "disappointing", "worst", "ugly", "frustrating",
"dislike", "annoying", "miserable", "stressful", "difficult", "problem",
"fail", "ruin", "never"
]
# --- Sentiment Analysis Function (Pure Python) ---
def analyze_sentiment_basic(text):
"""
Performs a very basic sentiment analysis based on predefined positive and negative keywords.
This function does not use any external NLP models or libraries.
"""
if not text:
return "Neutral", 0, 0 # Return neutral if no text
text_lower = text.lower()
positive_count = 0
negative_count = 0
# Count positive keywords
for keyword in POSITIVE_KEYWORDS:
positive_count += text_lower.count(keyword)
# Count negative keywords
for keyword in NEGATIVE_KEYWORDS:
negative_count += text_lower.count(keyword)
# Determine sentiment
if positive_count > negative_count:
return "Positive", positive_count, negative_count
elif negative_count > positive_count:
return "Negative", positive_count, negative_count
else:
return "Neutral", positive_count, negative_count
# --- Streamlit UI ---
# Header Section
st.markdown(
"""
<div style="text-align: center; padding: 20px; background-color: #f0f2f6; border-radius: 10px; margin-bottom: 30px;">
<h1 style="color: #333; font-size: 2.5em;">βοΈ Sentiment Analyzer</h1>
<p style="color: #555; font-size: 1.1em;">
Discover the sentiment of your text with a simple keyword-based analysis.
</p>
</div>
""",
unsafe_allow_html=True
)
st.markdown(
"""
<p style="font-size: 1.1em; text-align: center; margin-bottom: 20px;">
Enter any text below, and I'll tell you if its sentiment is positive, negative, or neutral based on a predefined list of keywords.
</p>
""",
unsafe_allow_html=True
)
# Text input from the user
user_input = st.text_area(
"π Enter your text here:",
"This is a good example, but it could be even better. I really enjoy using Streamlit!",
height=180,
key="user_text_input" # Added a key for better control
)
col1, col2 = st.columns([1, 1])
with col1:
analyze_button = st.button("β¨ Analyze Sentiment", key="analyze_btn")
with col2:
clear_button = st.button("ποΈ Clear Text", key="clear_btn")
# Clear button functionality
if clear_button:
st.session_state.user_text_input = "" # Clear the text area
st.experimental_rerun() # Rerun to clear the output
# Analyze button logic
if analyze_button:
if user_input:
sentiment, pos_count, neg_count = analyze_sentiment_basic(user_input)
st.markdown("---")
st.subheader("π Analysis Result:")
# Display result with appropriate styling and icons
if sentiment == "Positive":
st.success(f"**Sentiment:** Positive π")
elif sentiment == "Negative":
st.error(f"**Sentiment:** Negative π ")
else:
st.warning(f"**Sentiment:** Neutral π")
st.markdown(f"<p style='font-size: 1.05em;'>Positive keyword matches: <strong>{pos_count}</strong></p>", unsafe_allow_html=True)
st.markdown(f"<p style='font-size: 1.05em;'>Negative keyword matches: <strong>{neg_count}</strong></p>", unsafe_allow_html=True)
st.markdown("---")
st.write(f"**Original Text:**")
st.markdown(f"<div style='background-color: #e9ecef; padding: 15px; border-radius: 8px; border-left: 5px solid #007bff;'><em>{user_input}</em></div>", unsafe_allow_html=True)
else:
st.warning("Please enter some text to analyze.")
# Custom CSS for enhanced styling
st.markdown(
"""
<style>
/* General body and font */
body {
font-family: 'Inter', sans-serif;
background-color: #f8f9fa;
color: #343a40;
}
/* Streamlit widgets styling */
.stButton>button {
background-color: #28a745; /* Green for analyze */
color: white;
padding: 12px 25px;
border-radius: 10px;
border: none;
cursor: pointer;
font-size: 1.1em;
font-weight: bold;
box-shadow: 0 5px 15px rgba(40, 167, 69, 0.3);
transition: all 0.3s ease-in-out;
width: 100%; /* Make buttons full width in columns */
}
.stButton>button:hover {
background-color: #218838;
box-shadow: 0 8px 20px rgba(40, 167, 69, 0.4);
transform: translateY(-2px);
}
/* Clear button specific style */
.stButton[key="clear_btn"] > button {
background-color: #dc3545; /* Red for clear */
box-shadow: 0 5px 15px rgba(220, 53, 69, 0.3);
}
.stButton[key="clear_btn"] > button:hover {
background-color: #c82333;
box-shadow: 0 8px 20px rgba(220, 53, 69, 0.4);
}
.stTextArea>div>div>textarea {
border-radius: 10px;
border: 1px solid #ced4da;
padding: 15px;
font-size: 1.05em;
box-shadow: inset 0 1px 3px rgba(0,0,0,0.1);
transition: border-color 0.3s ease-in-out;
}
.stTextArea>div>div>textarea:focus {
border-color: #007bff;
outline: none;
}
/* Streamlit message boxes */
.stSuccess {
background-color: #d4edda;
color: #155724;
border-radius: 8px;
padding: 15px;
border: 1px solid #c3e6cb;
font-weight: bold;
}
.stError {
background-color: #f8d7da;
color: #721c24;
border-radius: 8px;
padding: 15px;
border: 1px solid #f5c6cb;
font-weight: bold;
}
.stWarning {
background-color: #fff3cd;
color: #856404;
border-radius: 8px;
padding: 15px;
border: 1px solid #ffeeba;
font-weight: bold;
}
.stInfo {
background-color: #d1ecf1;
color: #0c5460;
border-radius: 8px;
padding: 10px;
border: 1px solid #bee5eb;
margin-top: 10px;
}
/* Markdown styling for titles and text */
h1 {
color: #007bff;
text-align: center;
font-weight: 700;
margin-bottom: 20px;
}
h2, h3, h4, h5, h6 {
color: #343a40;
margin-top: 25px;
margin-bottom: 15px;
}
p {
line-height: 1.6;
}
</style>
""",
unsafe_allow_html=True
)
# Footer
st.markdown(
"""
<div style="text-align: center; margin-top: 50px; padding: 20px; border-top: 1px solid #eee; color: #6c757d;">
<p>Built with β€οΈ using Streamlit and pure Python.</p>
</div>
""",
unsafe_allow_html=True
)
|