Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
# --- App Configuration ---
|
4 |
+
st.set_page_config(
|
5 |
+
page_title="Basic Python Sentiment Analyzer",
|
6 |
+
page_icon="✍️",
|
7 |
+
layout="centered",
|
8 |
+
initial_sidebar_state="auto"
|
9 |
+
)
|
10 |
+
|
11 |
+
# --- Define Sentiment Keywords (Pure Python Logic) ---
|
12 |
+
# These are very basic lists for demonstration purposes.
|
13 |
+
# A real-world rule-based system would be much more extensive and nuanced.
|
14 |
+
POSITIVE_KEYWORDS = [
|
15 |
+
"good", "great", "excellent", "amazing", "fantastic", "love", "happy",
|
16 |
+
"joy", "wonderful", "positive", "awesome", "beautiful", "perfect", "like",
|
17 |
+
"enjoy", "best", "super", "nice", "pleased", "delightful", "brilliant"
|
18 |
+
]
|
19 |
+
|
20 |
+
NEGATIVE_KEYWORDS = [
|
21 |
+
"bad", "terrible", "horrible", "awful", "hate", "sad", "unhappy",
|
22 |
+
"poor", "negative", "disappointing", "worst", "ugly", "frustrating",
|
23 |
+
"dislike", "annoying", "miserable", "stressful", "difficult", "problem",
|
24 |
+
"fail", "ruin", "never"
|
25 |
+
]
|
26 |
+
|
27 |
+
# --- Sentiment Analysis Function (Pure Python) ---
|
28 |
+
def analyze_sentiment_basic(text):
|
29 |
+
"""
|
30 |
+
Performs a very basic sentiment analysis based on predefined positive and negative keywords.
|
31 |
+
This function does not use any external NLP models or libraries.
|
32 |
+
"""
|
33 |
+
if not text:
|
34 |
+
return "Neutral", 0, 0 # Return neutral if no text
|
35 |
+
|
36 |
+
text_lower = text.lower()
|
37 |
+
positive_count = 0
|
38 |
+
negative_count = 0
|
39 |
+
|
40 |
+
# Count positive keywords
|
41 |
+
for keyword in POSITIVE_KEYWORDS:
|
42 |
+
positive_count += text_lower.count(keyword)
|
43 |
+
|
44 |
+
# Count negative keywords
|
45 |
+
for keyword in NEGATIVE_KEYWORDS:
|
46 |
+
negative_count += text_lower.count(keyword)
|
47 |
+
|
48 |
+
# Determine sentiment
|
49 |
+
if positive_count > negative_count:
|
50 |
+
return "Positive", positive_count, negative_count
|
51 |
+
elif negative_count > positive_count:
|
52 |
+
return "Negative", positive_count, negative_count
|
53 |
+
else:
|
54 |
+
return "Neutral", positive_count, negative_count
|
55 |
+
|
56 |
+
# --- Streamlit UI ---
|
57 |
+
st.title("✍️ Basic Python Sentiment Analyzer")
|
58 |
+
st.markdown(
|
59 |
+
"""
|
60 |
+
This app performs sentiment analysis using only pure Python, based on a simple keyword matching approach.
|
61 |
+
It's a demonstration of a rule-based system without external NLP models.
|
62 |
+
"""
|
63 |
+
)
|
64 |
+
|
65 |
+
# Text input from the user
|
66 |
+
user_input = st.text_area(
|
67 |
+
"Enter your text here:",
|
68 |
+
"This is a good example, but it could be even better.",
|
69 |
+
height=150
|
70 |
+
)
|
71 |
+
|
72 |
+
# Analyze button
|
73 |
+
if st.button("Analyze Sentiment"):
|
74 |
+
if user_input:
|
75 |
+
sentiment, pos_count, neg_count = analyze_sentiment_basic(user_input)
|
76 |
+
|
77 |
+
st.subheader("Analysis Result:")
|
78 |
+
|
79 |
+
# Display result with appropriate styling
|
80 |
+
if sentiment == "Positive":
|
81 |
+
st.success(f"**Sentiment:** Positive 😊")
|
82 |
+
elif sentiment == "Negative":
|
83 |
+
st.error(f"**Sentiment:** Negative 😠")
|
84 |
+
else:
|
85 |
+
st.warning(f"**Sentiment:** Neutral 😐")
|
86 |
+
|
87 |
+
st.info(f"Positive keyword matches: {pos_count}")
|
88 |
+
st.info(f"Negative keyword matches: {neg_count}")
|
89 |
+
|
90 |
+
st.markdown("---")
|
91 |
+
st.write(f"**Original Text:**")
|
92 |
+
st.write(f"> {user_input}")
|
93 |
+
else:
|
94 |
+
st.warning("Please enter some text to analyze.")
|
95 |
+
|
96 |
+
# Custom CSS for styling
|
97 |
+
st.markdown(
|
98 |
+
"""
|
99 |
+
<style>
|
100 |
+
.stButton>button {
|
101 |
+
background-color: #007bff; /* Blue color for the button */
|
102 |
+
color: white;
|
103 |
+
padding: 10px 20px;
|
104 |
+
border-radius: 8px;
|
105 |
+
border: none;
|
106 |
+
cursor: pointer;
|
107 |
+
font-size: 16px;
|
108 |
+
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.2);
|
109 |
+
transition: 0.3s;
|
110 |
+
}
|
111 |
+
.stButton>button:hover {
|
112 |
+
background-color: #0056b3; /* Darker blue on hover */
|
113 |
+
box-shadow: 0 8px 16px 0 rgba(0,0,0,0.2);
|
114 |
+
}
|
115 |
+
.stTextArea>div>div>textarea {
|
116 |
+
border-radius: 8px;
|
117 |
+
border: 1px solid #ccc;
|
118 |
+
padding: 10px;
|
119 |
+
}
|
120 |
+
</style>
|
121 |
+
""",
|
122 |
+
unsafe_allow_html=True
|
123 |
+
)
|