salman-mhmd-khan's picture
Update app.py
538b9c2 verified
import streamlit as st
import yfinance as yf
import pandas as pd
import numpy as np
import feedparser
import requests
import base64
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
# Function to fetch cryptocurrency data
def get_crypto_data(symbol, period="30d", interval="1h"):
crypto = yf.Ticker(f"{symbol}-USD")
data = crypto.history(period=period, interval=interval)
return data
# Function to calculate RSI
def calculate_rsi(data, period=14):
delta = data['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
# Function to calculate Bollinger Bands
def calculate_bollinger_bands(data, period=20, std_dev=2):
sma = data['Close'].rolling(window=period).mean()
std = data['Close'].rolling(window=period).std()
upper_band = sma + (std * std_dev)
lower_band = sma - (std * std_dev)
return upper_band, lower_band
# Function to calculate MACD
def calculate_macd(data, short_window=12, long_window=26, signal_window=9):
short_ema = data['Close'].ewm(span=short_window, adjust=False).mean()
long_ema = data['Close'].ewm(span=long_window, adjust=False).mean()
macd = short_ema - long_ema
signal = macd.ewm(span=signal_window, adjust=False).mean()
return macd, signal
# Function to calculate EMA
def calculate_ema(data, period=20):
return data['Close'].ewm(span=period, adjust=False).mean()
# Function to calculate OBV
def calculate_obv(data):
obv = (np.sign(data['Close'].diff()) * data['Volume']).cumsum()
return obv
# Function to calculate probabilities for the next 12 hours
def calculate_probabilities(data):
# Calculate indicators on the entire dataset
data['RSI'] = calculate_rsi(data)
data['Upper_Band'], data['Lower_Band'] = calculate_bollinger_bands(data)
data['MACD'], data['MACD_Signal'] = calculate_macd(data)
data['EMA_50'] = calculate_ema(data, period=50)
data['EMA_200'] = calculate_ema(data, period=200)
data['OBV'] = calculate_obv(data)
# Use the most recent values for predictions
probabilities = {
"RSI": {"Value": data['RSI'].iloc[-1], "Pump": 0, "Dump": 0},
"Bollinger Bands": {"Value": data['Close'].iloc[-1], "Pump": 0, "Dump": 0},
"MACD": {"Value": data['MACD'].iloc[-1], "Pump": 0, "Dump": 0},
"EMA": {"Value": data['EMA_50'].iloc[-1], "Pump": 0, "Dump": 0},
"OBV": {"Value": data['OBV'].iloc[-1], "Pump": 0, "Dump": 0},
}
# RSI
rsi = data['RSI'].iloc[-1]
if rsi < 25:
probabilities["RSI"]["Pump"] = 90 # Strong Pump
elif 25 <= rsi < 30:
probabilities["RSI"]["Pump"] = 60 # Moderate Pump
elif 70 < rsi <= 75:
probabilities["RSI"]["Dump"] = 60 # Moderate Dump
elif rsi > 75:
probabilities["RSI"]["Dump"] = 90 # Strong Dump
# Bollinger Bands
close = data['Close'].iloc[-1]
upper_band = data['Upper_Band'].iloc[-1]
lower_band = data['Lower_Band'].iloc[-1]
if close <= lower_band:
probabilities["Bollinger Bands"]["Pump"] = 90 # Strong Pump
elif lower_band < close <= lower_band * 1.05:
probabilities["Bollinger Bands"]["Pump"] = 60 # Moderate Pump
elif upper_band * 0.95 <= close < upper_band:
probabilities["Bollinger Bands"]["Dump"] = 60 # Moderate Dump
elif close >= upper_band:
probabilities["Bollinger Bands"]["Dump"] = 90 # Strong Dump
# MACD
macd = data['MACD'].iloc[-1]
macd_signal = data['MACD_Signal'].iloc[-1]
if macd > macd_signal and macd > 0:
probabilities["MACD"]["Pump"] = 90 # Strong Pump
elif macd > macd_signal and macd <= 0:
probabilities["MACD"]["Pump"] = 60 # Moderate Pump
elif macd < macd_signal and macd >= 0:
probabilities["MACD"]["Dump"] = 60 # Moderate Dump
elif macd < macd_signal and macd < 0:
probabilities["MACD"]["Dump"] = 90 # Strong Dump
# EMA
ema_short = data['EMA_50'].iloc[-1]
ema_long = data['EMA_200'].iloc[-1]
if ema_short > ema_long and close > ema_short:
probabilities["EMA"]["Pump"] = 90 # Strong Pump
elif ema_short > ema_long and close <= ema_short:
probabilities["EMA"]["Pump"] = 60 # Moderate Pump
elif ema_short < ema_long and close >= ema_short:
probabilities["EMA"]["Dump"] = 60 # Moderate Dump
elif ema_short < ema_long and close < ema_short:
probabilities["EMA"]["Dump"] = 90 # Strong Dump
# OBV
obv = data['OBV'].iloc[-1]
if obv > 100000:
probabilities["OBV"]["Pump"] = 90 # Strong Pump
elif 50000 < obv <= 100000:
probabilities["OBV"]["Pump"] = 60 # Moderate Pump
elif -100000 <= obv < -50000:
probabilities["OBV"]["Dump"] = 60 # Moderate Dump
elif obv < -100000:
probabilities["OBV"]["Dump"] = 90 # Strong Dump
# Normalize Pump and Dump probabilities to sum to 100%
for indicator in probabilities:
pump_prob = probabilities[indicator]["Pump"]
dump_prob = probabilities[indicator]["Dump"]
# If pump probability is set, normalize dump
if pump_prob > 0:
probabilities[indicator]["Dump"] = 100 - pump_prob
# If dump probability is set, normalize pump
if dump_prob > 0:
probabilities[indicator]["Pump"] = 100 - dump_prob
return probabilities, data.iloc[-1]
# Function to calculate weighted probabilities
def calculate_weighted_probabilities(probabilities):
weightages = {
"RSI": 0.20,
"Bollinger Bands": 0.20,
"MACD": 0.25,
"EMA": 0.15,
"OBV": 0.20
}
# Initialize final probabilities
final_probabilities = {"Pump": 0, "Dump": 0}
# Calculate weighted probabilities
for indicator, values in probabilities.items():
pump_prob = values["Pump"] * weightages[indicator]
dump_prob = values["Dump"] * weightages[indicator]
final_probabilities["Pump"] += pump_prob
final_probabilities["Dump"] += dump_prob
# Normalize the final probabilities to ensure they sum to 100%
total = final_probabilities["Pump"] + final_probabilities["Dump"]
# Handle cases where the total sum of probabilities is zero
if total == 0:
final_probabilities["Pump"] = 50
final_probabilities["Dump"] = 50
else:
final_probabilities["Pump"] = (final_probabilities["Pump"] / total) * 100
final_probabilities["Dump"] = (final_probabilities["Dump"] / total) * 100
# Debugging the final probabilities to ensure they sum up to 100%
print(f"Final Pump Probability: {final_probabilities['Pump']}%")
print(f"Final Dump Probability: {final_probabilities['Dump']}%")
return final_probabilities
# Function to fetch news data from Google News RSS feeds
def fetch_news(coin_name):
try:
url = f"https://news.google.com/rss/search?q={coin_name}+cryptocurrency"
feed = feedparser.parse(url)
news_items = []
for entry in feed.entries[:5]: # Limit to 5 news items
news_items.append({
"title": entry.title,
"link": entry.link,
"published": entry.published,
})
return news_items
except Exception as e:
st.error(f"Error fetching news: {e}")
return []
# Prepare data for LSTM Model
def prepare_lstm_data(df, seq_len=60):
data = df['Price'].values.reshape(-1, 1)
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data)
sequences, labels = [], []
for i in range(len(scaled_data) - seq_len):
sequences.append(scaled_data[i:i + seq_len])
labels.append(scaled_data[i + seq_len])
return np.array(sequences), np.array(labels), scaler
# Build and train LSTM model
def build_lstm_model(input_shape):
model = Sequential([
LSTM(units=50, return_sequences=True, input_shape=input_shape),
Dropout(0.2),
LSTM(units=50, return_sequences=False),
Dropout(0.2),
Dense(units=25),
Dense(units=1)
])
model.compile(optimizer='adam', loss='mean_squared_error')
return model
# Calculate prediction based of LTSM model learning
def calculate_prediction_with_ltsm(symbol="BTC", period="5d", interval="5m"):
st.write("**Fetched Data...")
data = get_crypto_data(symbol, period, interval)
prices = [(pd.to_datetime(index, unit='m'), price) for index, price in data['Close'].items()]
df = pd.DataFrame(prices, columns=['Date', 'Price'])
st.write("**Preparing data for LTSM Model training......(processing)...")
X, Y, scaler = prepare_lstm_data(df)
st.write("**Build LTSM Model with X shape data.........(processing)...")
model = build_lstm_model((X.shape[1], 1))
# Train the model
st.write("**Train LTSM Model with X,Y shape data with batch_size(32), epochs(10)............(processing)...")
model.fit(X, Y, batch_size=32, epochs=10)
# Predict the next price point
st.write("**Sequence LTSM Model with X,Y shape data with batch_size(32), epochs(10)...............(processing)...")
last_sequence = X[-1].reshape(1, X.shape[1], 1)
st.write("**Predict realtime price with LTSM Model trained with X,Y shape data with batch_size(32), epochs(10)..................(processing)...")
scaled_prediction = model.predict(last_sequence)
predicted_price = scaler.inverse_transform(scaled_prediction)
return predicted_price
# Streamlit App
st.set_page_config(page_title="Crypto Insights ", layout="wide")
# Add styled title with specific color
st.markdown(
"""
<div style="text-align: center; margin-top: 5px; margin-left: 20px">
<h1 style="font-size: 2.5em; color: #FFD700;">Crypto Vision</h1>
</div>
""",
unsafe_allow_html=True
)
# Add styled subtitle with lines on both sides and reduced gap
st.markdown(
"""
<div style="display: flex; align-items: center; justify-content: center; margin-top: 0px;">
<hr style="width: 20%; border: 1px solid #ccc; margin: 0 5px; height: 1px;">
<span style="font-size: 1.2em; color: gray; margin: 0;">MARKET ANALYZER</span>
<hr style="width: 20%; border: 1px solid #ccc; margin: 0 5px; height: 1px;">
</div>
""",
unsafe_allow_html=True
)
# Function to add a background image to the app
def add_background_to_main(image_file):
page_bg_img = f"""
<style>
/* Apply background image to the main container */
[data-testid="stAppViewContainer"] {{
background-image: url('data:image/jpeg;base64,{image_file}');
background-size: cover;
background-position: center;
background-repeat: no-repeat;
background-attachment: fixed;
min-height: 100vh;
}}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
# Function to encode the image to Base64
def get_base64_of_image(image_path):
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode()
# Add the background image (ensure the image file is in the correct path)
image_path = "black.jpeg" # Replace with your image file name
try:
encoded_image = get_base64_of_image(image_path)
add_background_to_main(encoded_image)
except FileNotFoundError:
st.warning(f"Background image '{image_path}' not found. Please check the file path.")
st.markdown("""
Welcome to the "Crypto Vision". This tool provides real-time predictions
and insights on cryptocurrency price movements using advanced technical indicators like RSI,
Bollinger Bands, MACD, and more. Simply enter the cryptocurrency symbol, and our tool will analyze the
market data, calculate indicators, and provide you with the probabilities of price movements (pump or dump).
Stay ahead in your crypto trading with this powerful tool!
""")
# Add CSS to make the sidebar fixed and apply hover effect on buttons
st.markdown(
"""
<style>
/* Make the sidebar always visible and fixed */
[data-testid="stSidebar"] {
width: 300px;
min-width: 300px;
max-width: 300px;
position: fixed;
top: 0;
left: 0;
bottom: 0;
background-color: #2d2d2d;
padding-top: 20px;
z-index: 9999;
}
[data-testid="collapsedControl"] {
display: none;
}
/* Sidebar button hover effect */
.css-1emrehy.edgvbvh3 {
background-color: #3e3e3e;
color: #fff;
transition: all 0.3s ease;
}
.css-1emrehy.edgvbvh3:hover {
background-color: #FFD700;
color: black;
}
/* Optional: Add padding for better spacing */
.css-1emrehy.edgvbvh3 {
margin-bottom: 15px;
border-radius: 5px;
padding: 12px;
font-size: 16px;
font-weight: bold;
}
/* Customize the sidebar header */
.css-1r6slb0 {
color: #FFD700;
font-size: 20px;
font-weight: bold;
}
/* Customizing the text input inside the sidebar */
.stTextInput input {
background-color: #3e3e3e;
color: #fff;
border: 1px solid #FFD700;
border-radius: 5px;
padding: 10px;
}
/* Customize the buttons inside the sidebar */
.stButton button {
background-color: #3e3e3e;
color: #fff;
border-radius: 5px;
padding: 12px;
font-size: 16px;
font-weight: bold;
}
.stButton button:hover {
background-color: #C0C0C0;
color: black;
}
</style>
""",
unsafe_allow_html=True
)
# Sidebar for user input
st.sidebar.header("Cryptocurrency Symbol")
symbol = st.sidebar.text_input("Enter Cryptocurrency Symbol (e.g., BTC):", "BTC")
# Add buttons for navigation
show_news_button = st.sidebar.button("Show Latest News")
show_data_button = st.sidebar.button("Show Data and Indicators")
predict_lstm_button = st.sidebar.button("Predict by training LSTM Model")
# Fetch data and news when the button is clicked
if show_data_button:
if symbol:
# Fetch data
data = get_crypto_data(symbol)
if data.empty:
st.error(f"No data found for {symbol}. Please check the symbol and try again.")
else:
# Display fetched data
st.write("**Fetched Data:**")
st.dataframe(data.tail())
# Ensure the DataFrame has enough rows
if len(data) < 20:
st.warning(f"Not enough data to calculate indicators. Only {len(data)} rows available. Please try a longer period.")
else:
# Calculate probabilities for the next 12 hours
probabilities, recent_data = calculate_probabilities(data)
# Create a DataFrame for the indicator values
indicator_values = {
"Indicator": ["RSI", "Bollinger Bands", "MACD", "EMA", "OBV"],
"Value": [probabilities["RSI"]["Value"], probabilities["Bollinger Bands"]["Value"], probabilities["MACD"]["Value"], probabilities["EMA"]["Value"], probabilities["OBV"]["Value"]],
}
# Convert dictionary to a DataFrame
df_indicators = pd.DataFrame(indicator_values)
# Display indicator values in table format
st.write("### **Indicators and Probabilities Table**:")
st.dataframe(df_indicators)
# Calculate weighted combined probabilities
weighted_probabilities = calculate_weighted_probabilities(probabilities)
# Display final combined probability predictions
st.write("### **Final Predicted Probabilities for the Next 12 Hours:**")
st.write(f"- **Pump Probability**: {weighted_probabilities['Pump']:.2f}%")
st.write(f"- **Dump Probability**: {weighted_probabilities['Dump']:.2f}%")
elif show_news_button:
if symbol:
# Fetch news
news_items = fetch_news(symbol)
if news_items:
st.write("### Latest News:")
for news_item in news_items:
st.markdown(f"**{news_item['title']}**: [Read More]({news_item['link']})")
st.write(f"Published on: {news_item['published']}")
else:
st.warning(f"No news found for {symbol}. Please try again later.")
elif predict_lstm_button:
if symbol:
# Call the LSTM prediction function based on last 5 days with 5 interval of closing data
st.markdown(
"""
<h3 style="color: #FFD700;">Final Predicted Value Learned by training a LSTM Model</h3>
<p style="font-size: 1.5em; color: #32CD32;">
***Based on the last 5 days with 5-minute intervals of closing data***
</p>
""",
unsafe_allow_html=True
)
period = "5d"
interval = "5m"
predicted_price = calculate_prediction_with_ltsm(symbol, period, interval)
#st.write("### **Final Predicted value by learned LTSM model based on last 5 days with 5 interval of closing data** ###")
#st.write(f"**Predicted next realtime price: ${predicted_price[0][0]:.10f}**")
st.markdown(
f"""
<p style="font-size: 2em; font-weight: bold; color: #FF4500;">
Predicted Next Realtime Price: ${predicted_price[0][0]:.10f}
</p>
""",
unsafe_allow_html=True
)