salman-mhmd-khan commited on
Commit
538b9c2
·
verified ·
1 Parent(s): bf5dd11

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -232,21 +232,21 @@ def calculate_prediction_with_ltsm(symbol="BTC", period="5d", interval="5m"):
232
  prices = [(pd.to_datetime(index, unit='m'), price) for index, price in data['Close'].items()]
233
  df = pd.DataFrame(prices, columns=['Date', 'Price'])
234
 
235
- st.write("**Preparing data for LTSM Model training......")
236
  X, Y, scaler = prepare_lstm_data(df)
237
 
238
- st.write("**Build LTSM Model with X shape data.........")
239
  model = build_lstm_model((X.shape[1], 1))
240
 
241
  # Train the model
242
- st.write("**Train LTSM Model with X,Y shape data with batch_size(32), epochs(10)............")
243
  model.fit(X, Y, batch_size=32, epochs=10)
244
 
245
  # Predict the next price point
246
- st.write("**Sequence LTSM Model with X,Y shape data with batch_size(32), epochs(10)...............")
247
  last_sequence = X[-1].reshape(1, X.shape[1], 1)
248
 
249
- st.write("**Predict realtime price with LTSM Model trained with X,Y shape data with batch_size(32), epochs(10)..................")
250
  scaled_prediction = model.predict(last_sequence)
251
  predicted_price = scaler.inverse_transform(scaled_prediction)
252
 
@@ -396,8 +396,8 @@ symbol = st.sidebar.text_input("Enter Cryptocurrency Symbol (e.g., BTC):", "BTC"
396
 
397
  # Add buttons for navigation
398
  show_news_button = st.sidebar.button("Show Latest News")
399
- show_data_button = st.sidebar.button("Show Data and Prediction")
400
- predict_lstm_button = st.sidebar.button("Predict with LSTM Model")
401
 
402
 
403
  # Fetch data and news when the button is clicked
 
232
  prices = [(pd.to_datetime(index, unit='m'), price) for index, price in data['Close'].items()]
233
  df = pd.DataFrame(prices, columns=['Date', 'Price'])
234
 
235
+ st.write("**Preparing data for LTSM Model training......(processing)...")
236
  X, Y, scaler = prepare_lstm_data(df)
237
 
238
+ st.write("**Build LTSM Model with X shape data.........(processing)...")
239
  model = build_lstm_model((X.shape[1], 1))
240
 
241
  # Train the model
242
+ st.write("**Train LTSM Model with X,Y shape data with batch_size(32), epochs(10)............(processing)...")
243
  model.fit(X, Y, batch_size=32, epochs=10)
244
 
245
  # Predict the next price point
246
+ st.write("**Sequence LTSM Model with X,Y shape data with batch_size(32), epochs(10)...............(processing)...")
247
  last_sequence = X[-1].reshape(1, X.shape[1], 1)
248
 
249
+ st.write("**Predict realtime price with LTSM Model trained with X,Y shape data with batch_size(32), epochs(10)..................(processing)...")
250
  scaled_prediction = model.predict(last_sequence)
251
  predicted_price = scaler.inverse_transform(scaled_prediction)
252
 
 
396
 
397
  # Add buttons for navigation
398
  show_news_button = st.sidebar.button("Show Latest News")
399
+ show_data_button = st.sidebar.button("Show Data and Indicators")
400
+ predict_lstm_button = st.sidebar.button("Predict by training LSTM Model")
401
 
402
 
403
  # Fetch data and news when the button is clicked