|
import os |
|
import json |
|
import streamlit as st |
|
import faiss |
|
import numpy as np |
|
from sentence_transformers import SentenceTransformer |
|
from transformers import pipeline |
|
from reportlab.lib.pagesizes import A4 |
|
from reportlab.platypus import Paragraph, SimpleDocTemplate, Spacer |
|
from reportlab.lib.styles import getSampleStyleSheet |
|
|
|
|
|
with open('milestones.json', 'r') as f: |
|
milestones = json.load(f) |
|
|
|
|
|
age_categories = { |
|
"Up to 2 months": 2, |
|
"Up to 4 months": 4, |
|
"Up to 6 months": 6, |
|
"Up to 9 months": 9, |
|
"Up to 1 year": 12, |
|
"Up to 15 months": 15, |
|
"Up to 18 months": 18, |
|
"Up to 2 years": 24, |
|
"Up to 30 months": 30, |
|
"Up to 3 years": 36, |
|
"Up to 4 years": 48, |
|
"Up to 5 years": 60 |
|
} |
|
|
|
|
|
model = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
def create_faiss_index(data): |
|
descriptions = [] |
|
age_keys = [] |
|
for age, categories in data.items(): |
|
for entry in categories: |
|
descriptions.append(entry['description']) |
|
age_keys.append(int(age)) |
|
|
|
embeddings = model.encode(descriptions, convert_to_numpy=True) |
|
index = faiss.IndexFlatL2(embeddings.shape[1]) |
|
index.add(embeddings) |
|
return index, descriptions, age_keys |
|
|
|
index, descriptions, age_keys = create_faiss_index(milestones) |
|
|
|
|
|
def retrieve_milestone(user_input): |
|
user_embedding = model.encode([user_input], convert_to_numpy=True) |
|
_, indices = index.search(user_embedding, 1) |
|
return descriptions[indices[0][0]] if indices[0][0] < len(descriptions) else "No relevant milestone found." |
|
|
|
|
|
ibm_model = pipeline("text-generation", model="ibm-granite", max_length=512) |
|
|
|
def generate_response(user_input, child_age): |
|
relevant_milestone = retrieve_milestone(user_input) |
|
prompt = (f"The child is {child_age} months old. Based on the given traits: {user_input}, " |
|
f"determine whether the child is meeting expected milestones. " |
|
f"Relevant milestone: {relevant_milestone}. " |
|
"If there are any concerns, suggest steps the parents can take. ") |
|
response = ibm_model(prompt) |
|
return response[0]['generated_text'] |
|
|
|
|
|
st.set_page_config(page_title="Tiny Triumphs Tracker", page_icon="👶", layout="wide") |
|
st.markdown(""" |
|
<style> |
|
.stApp { background-color: #1e1e2e; color: #ffffff; } |
|
.stTitle { text-align: center; color: #ffcc00; font-size: 36px; font-weight: bold; } |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown("<h1 class='stTitle'>👶 Tiny Triumphs Tracker</h1>", unsafe_allow_html=True) |
|
st.markdown("Track your child's key growth milestones from birth to 5 years and detect early developmental concerns.", unsafe_allow_html=True) |
|
|
|
|
|
selected_age = st.selectbox("📅 Select child's age:", list(age_categories.keys())) |
|
child_age = age_categories[selected_age] |
|
|
|
|
|
placeholder_text = "Describe your child's behavior and skills." |
|
user_input = st.text_area("✍️ Enter child's behavioral traits and skills:", placeholder=placeholder_text) |
|
|
|
def generate_pdf_report(ai_response): |
|
pdf_file = "progress_report.pdf" |
|
doc = SimpleDocTemplate(pdf_file, pagesize=A4) |
|
styles = getSampleStyleSheet() |
|
elements = [] |
|
elements.append(Paragraph("Child Development Progress Report", styles['Title'])) |
|
elements.append(Spacer(1, 12)) |
|
elements.append(Paragraph("Development Insights:", styles['Heading2'])) |
|
elements.append(Spacer(1, 10)) |
|
response_parts = ai_response.split('\n') |
|
for part in response_parts: |
|
part = part.strip().lstrip('0123456789.- ') |
|
if part: |
|
elements.append(Paragraph(f"• {part}", styles['Normal'])) |
|
elements.append(Spacer(1, 5)) |
|
disclaimer = "This report is AI-generated and is for informational purposes only. " |
|
elements.append(Spacer(1, 12)) |
|
elements.append(Paragraph(disclaimer, styles['Italic'])) |
|
doc.build(elements) |
|
return pdf_file |
|
|
|
if st.button("🔍 Analyze", help="Click to analyze the child's development milestones"): |
|
ai_response = generate_response(user_input, child_age) |
|
st.subheader("📊 Development Insights:") |
|
st.markdown(f"<div style='background-color:#44475a; color:#ffffff; padding: 15px; border-radius: 10px;'>{ai_response}</div>", unsafe_allow_html=True) |
|
pdf_file = generate_pdf_report(ai_response) |
|
with open(pdf_file, "rb") as f: |
|
st.download_button(label="📥 Download Progress Report", data=f, file_name="progress_report.pdf", mime="application/pdf") |
|
|
|
st.warning("⚠️ The results provided are generated by AI and should be interpreted with caution. Please consult a pediatrician for professional advice.") |
|
|