File size: 4,843 Bytes
1fa3d49
 
 
 
 
 
35e1c43
1fa3d49
 
 
 
 
 
 
 
 
 
35e1c43
 
 
 
 
 
 
 
 
 
 
 
1fa3d49
 
 
35e1c43
1fa3d49
 
35e1c43
 
1fa3d49
 
 
35e1c43
1fa3d49
35e1c43
1fa3d49
 
 
 
 
 
 
 
35e1c43
1fa3d49
 
 
35e1c43
 
1fa3d49
 
 
35e1c43
 
 
 
 
 
1fa3d49
 
 
35e1c43
 
 
 
 
 
1fa3d49
35e1c43
 
1fa3d49
 
 
 
 
 
35e1c43
1fa3d49
 
 
 
 
 
35e1c43
 
 
 
 
 
 
1fa3d49
 
 
 
35e1c43
1fa3d49
 
 
 
 
 
 
 
 
 
 
 
 
0b8937c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import json
import streamlit as st
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from reportlab.lib.pagesizes import A4
from reportlab.platypus import Paragraph, SimpleDocTemplate, Spacer
from reportlab.lib.styles import getSampleStyleSheet

# Load milestones data
with open('milestones.json', 'r') as f:
    milestones = json.load(f)

# Age categories for dropdown selection
age_categories = {
    "Up to 2 months": 2,
    "Up to 4 months": 4,
    "Up to 6 months": 6,
    "Up to 9 months": 9,
    "Up to 1 year": 12,
    "Up to 15 months": 15,
    "Up to 18 months": 18,
    "Up to 2 years": 24,
    "Up to 30 months": 30,
    "Up to 3 years": 36,
    "Up to 4 years": 48,
    "Up to 5 years": 60
}

# Initialize FAISS and Sentence Transformer
model = SentenceTransformer('all-MiniLM-L6-v2')

def create_faiss_index(data):
    descriptions = []
    age_keys = []
    for age, categories in data.items():
        for entry in categories:
            descriptions.append(entry['description'])
            age_keys.append(int(age))
    
    embeddings = model.encode(descriptions, convert_to_numpy=True)
    index = faiss.IndexFlatL2(embeddings.shape[1])
    index.add(embeddings)
    return index, descriptions, age_keys

index, descriptions, age_keys = create_faiss_index(milestones)

# Function to retrieve the closest milestone
def retrieve_milestone(user_input):
    user_embedding = model.encode([user_input], convert_to_numpy=True)
    _, indices = index.search(user_embedding, 1)
    return descriptions[indices[0][0]] if indices[0][0] < len(descriptions) else "No relevant milestone found."

# Initialize IBM Granite Model
ibm_model = pipeline("text-generation", model="ibm-granite", max_length=512)

def generate_response(user_input, child_age):
    relevant_milestone = retrieve_milestone(user_input)
    prompt = (f"The child is {child_age} months old. Based on the given traits: {user_input}, "
              f"determine whether the child is meeting expected milestones. "
              f"Relevant milestone: {relevant_milestone}. "
              "If there are any concerns, suggest steps the parents can take. ")
    response = ibm_model(prompt)
    return response[0]['generated_text']

# Streamlit UI Styling
st.set_page_config(page_title="Tiny Triumphs Tracker", page_icon="👶", layout="wide")
st.markdown("""
    <style>
        .stApp { background-color: #1e1e2e; color: #ffffff; }
        .stTitle { text-align: center; color: #ffcc00; font-size: 36px; font-weight: bold; }
    </style>
""", unsafe_allow_html=True)

st.markdown("<h1 class='stTitle'>👶 Tiny Triumphs Tracker</h1>", unsafe_allow_html=True)
st.markdown("Track your child's key growth milestones from birth to 5 years and detect early developmental concerns.", unsafe_allow_html=True)

# User selects child's age
selected_age = st.selectbox("📅 Select child's age:", list(age_categories.keys()))
child_age = age_categories[selected_age]

# User input for traits and skills
placeholder_text = "Describe your child's behavior and skills."
user_input = st.text_area("✍️ Enter child's behavioral traits and skills:", placeholder=placeholder_text)

def generate_pdf_report(ai_response):
    pdf_file = "progress_report.pdf"
    doc = SimpleDocTemplate(pdf_file, pagesize=A4)
    styles = getSampleStyleSheet()
    elements = []
    elements.append(Paragraph("Child Development Progress Report", styles['Title']))
    elements.append(Spacer(1, 12))
    elements.append(Paragraph("Development Insights:", styles['Heading2']))
    elements.append(Spacer(1, 10))
    response_parts = ai_response.split('\n')
    for part in response_parts:
        part = part.strip().lstrip('0123456789.- ')
        if part:
            elements.append(Paragraph(f"• {part}", styles['Normal']))
            elements.append(Spacer(1, 5))
    disclaimer = "This report is AI-generated and is for informational purposes only. "
    elements.append(Spacer(1, 12))
    elements.append(Paragraph(disclaimer, styles['Italic']))
    doc.build(elements)
    return pdf_file

if st.button("🔍 Analyze", help="Click to analyze the child's development milestones"):
    ai_response = generate_response(user_input, child_age)
    st.subheader("📊 Development Insights:")
    st.markdown(f"<div style='background-color:#44475a; color:#ffffff; padding: 15px; border-radius: 10px;'>{ai_response}</div>", unsafe_allow_html=True)
    pdf_file = generate_pdf_report(ai_response)
    with open(pdf_file, "rb") as f:
        st.download_button(label="📥 Download Progress Report", data=f, file_name="progress_report.pdf", mime="application/pdf")

st.warning("⚠️ The results provided are generated by AI and should be interpreted with caution. Please consult a pediatrician for professional advice.")