RockeyCoss
add code files”
51f6859
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmcv.runner import BaseModule
from torch.nn.modules.batchnorm import _BatchNorm
from ..builder import BACKBONES
from ..utils import CSPLayer
class Focus(nn.Module):
"""Focus width and height information into channel space.
Args:
in_channels (int): The input channels of this Module.
out_channels (int): The output channels of this Module.
kernel_size (int): The kernel size of the convolution. Default: 1
stride (int): The stride of the convolution. Default: 1
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='Swish').
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
conv_cfg=None,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish')):
super().__init__()
self.conv = ConvModule(
in_channels * 4,
out_channels,
kernel_size,
stride,
padding=(kernel_size - 1) // 2,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, x):
# shape of x (b,c,w,h) -> y(b,4c,w/2,h/2)
patch_top_left = x[..., ::2, ::2]
patch_top_right = x[..., ::2, 1::2]
patch_bot_left = x[..., 1::2, ::2]
patch_bot_right = x[..., 1::2, 1::2]
x = torch.cat(
(
patch_top_left,
patch_bot_left,
patch_top_right,
patch_bot_right,
),
dim=1,
)
return self.conv(x)
class SPPBottleneck(BaseModule):
"""Spatial pyramid pooling layer used in YOLOv3-SPP.
Args:
in_channels (int): The input channels of this Module.
out_channels (int): The output channels of this Module.
kernel_sizes (tuple[int]): Sequential of kernel sizes of pooling
layers. Default: (5, 9, 13).
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='Swish').
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
kernel_sizes=(5, 9, 13),
conv_cfg=None,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
init_cfg=None):
super().__init__(init_cfg)
mid_channels = in_channels // 2
self.conv1 = ConvModule(
in_channels,
mid_channels,
1,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.poolings = nn.ModuleList([
nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2)
for ks in kernel_sizes
])
conv2_channels = mid_channels * (len(kernel_sizes) + 1)
self.conv2 = ConvModule(
conv2_channels,
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, x):
x = self.conv1(x)
x = torch.cat([x] + [pooling(x) for pooling in self.poolings], dim=1)
x = self.conv2(x)
return x
@BACKBONES.register_module()
class CSPDarknet(BaseModule):
"""CSP-Darknet backbone used in YOLOv5 and YOLOX.
Args:
arch (str): Architecture of CSP-Darknet, from {P5, P6}.
Default: P5.
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Default: 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Default: 1.0.
out_indices (Sequence[int]): Output from which stages.
Default: (2, 3, 4).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Default: -1.
use_depthwise (bool): Whether to use depthwise separable convolution.
Default: False.
arch_ovewrite(list): Overwrite default arch settings. Default: None.
spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP
layers. Default: (5, 9, 13).
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', negative_slope=0.1).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
Example:
>>> from mmdet.models import CSPDarknet
>>> import torch
>>> self = CSPDarknet(depth=53)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
# From left to right:
# in_channels, out_channels, num_blocks, add_identity, use_spp
arch_settings = {
'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False],
[256, 512, 9, True, False], [512, 1024, 3, False, True]],
'P6': [[64, 128, 3, True, False], [128, 256, 9, True, False],
[256, 512, 9, True, False], [512, 768, 3, True, False],
[768, 1024, 3, False, True]]
}
def __init__(self,
arch='P5',
deepen_factor=1.0,
widen_factor=1.0,
out_indices=(2, 3, 4),
frozen_stages=-1,
use_depthwise=False,
arch_ovewrite=None,
spp_kernal_sizes=(5, 9, 13),
conv_cfg=None,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
norm_eval=False,
init_cfg=dict(
type='Kaiming',
layer='Conv2d',
a=math.sqrt(5),
distribution='uniform',
mode='fan_in',
nonlinearity='leaky_relu')):
super().__init__(init_cfg)
arch_setting = self.arch_settings[arch]
if arch_ovewrite:
arch_setting = arch_ovewrite
assert set(out_indices).issubset(
i for i in range(len(arch_setting) + 1))
if frozen_stages not in range(-1, len(arch_setting) + 1):
raise ValueError('frozen_stages must be in range(-1, '
'len(arch_setting) + 1). But received '
f'{frozen_stages}')
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.use_depthwise = use_depthwise
self.norm_eval = norm_eval
conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
self.stem = Focus(
3,
int(arch_setting[0][0] * widen_factor),
kernel_size=3,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.layers = ['stem']
for i, (in_channels, out_channels, num_blocks, add_identity,
use_spp) in enumerate(arch_setting):
in_channels = int(in_channels * widen_factor)
out_channels = int(out_channels * widen_factor)
num_blocks = max(round(num_blocks * deepen_factor), 1)
stage = []
conv_layer = conv(
in_channels,
out_channels,
3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
stage.append(conv_layer)
if use_spp:
spp = SPPBottleneck(
out_channels,
out_channels,
kernel_sizes=spp_kernal_sizes,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
stage.append(spp)
csp_layer = CSPLayer(
out_channels,
out_channels,
num_blocks=num_blocks,
add_identity=add_identity,
use_depthwise=use_depthwise,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
stage.append(csp_layer)
self.add_module(f'stage{i + 1}', nn.Sequential(*stage))
self.layers.append(f'stage{i + 1}')
def _freeze_stages(self):
if self.frozen_stages >= 0:
for i in range(self.frozen_stages + 1):
m = getattr(self, self.layers[i])
m.eval()
for param in m.parameters():
param.requires_grad = False
def train(self, mode=True):
super(CSPDarknet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
def forward(self, x):
outs = []
for i, layer_name in enumerate(self.layers):
layer = getattr(self, layer_name)
x = layer(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)