Spaces:
Runtime error
Runtime error
File size: 10,543 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmcv.runner import BaseModule
from torch.nn.modules.batchnorm import _BatchNorm
from ..builder import BACKBONES
from ..utils import CSPLayer
class Focus(nn.Module):
"""Focus width and height information into channel space.
Args:
in_channels (int): The input channels of this Module.
out_channels (int): The output channels of this Module.
kernel_size (int): The kernel size of the convolution. Default: 1
stride (int): The stride of the convolution. Default: 1
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='Swish').
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
conv_cfg=None,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish')):
super().__init__()
self.conv = ConvModule(
in_channels * 4,
out_channels,
kernel_size,
stride,
padding=(kernel_size - 1) // 2,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, x):
# shape of x (b,c,w,h) -> y(b,4c,w/2,h/2)
patch_top_left = x[..., ::2, ::2]
patch_top_right = x[..., ::2, 1::2]
patch_bot_left = x[..., 1::2, ::2]
patch_bot_right = x[..., 1::2, 1::2]
x = torch.cat(
(
patch_top_left,
patch_bot_left,
patch_top_right,
patch_bot_right,
),
dim=1,
)
return self.conv(x)
class SPPBottleneck(BaseModule):
"""Spatial pyramid pooling layer used in YOLOv3-SPP.
Args:
in_channels (int): The input channels of this Module.
out_channels (int): The output channels of this Module.
kernel_sizes (tuple[int]): Sequential of kernel sizes of pooling
layers. Default: (5, 9, 13).
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='Swish').
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
kernel_sizes=(5, 9, 13),
conv_cfg=None,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
init_cfg=None):
super().__init__(init_cfg)
mid_channels = in_channels // 2
self.conv1 = ConvModule(
in_channels,
mid_channels,
1,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.poolings = nn.ModuleList([
nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2)
for ks in kernel_sizes
])
conv2_channels = mid_channels * (len(kernel_sizes) + 1)
self.conv2 = ConvModule(
conv2_channels,
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, x):
x = self.conv1(x)
x = torch.cat([x] + [pooling(x) for pooling in self.poolings], dim=1)
x = self.conv2(x)
return x
@BACKBONES.register_module()
class CSPDarknet(BaseModule):
"""CSP-Darknet backbone used in YOLOv5 and YOLOX.
Args:
arch (str): Architecture of CSP-Darknet, from {P5, P6}.
Default: P5.
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Default: 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Default: 1.0.
out_indices (Sequence[int]): Output from which stages.
Default: (2, 3, 4).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Default: -1.
use_depthwise (bool): Whether to use depthwise separable convolution.
Default: False.
arch_ovewrite(list): Overwrite default arch settings. Default: None.
spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP
layers. Default: (5, 9, 13).
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', negative_slope=0.1).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
Example:
>>> from mmdet.models import CSPDarknet
>>> import torch
>>> self = CSPDarknet(depth=53)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
# From left to right:
# in_channels, out_channels, num_blocks, add_identity, use_spp
arch_settings = {
'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False],
[256, 512, 9, True, False], [512, 1024, 3, False, True]],
'P6': [[64, 128, 3, True, False], [128, 256, 9, True, False],
[256, 512, 9, True, False], [512, 768, 3, True, False],
[768, 1024, 3, False, True]]
}
def __init__(self,
arch='P5',
deepen_factor=1.0,
widen_factor=1.0,
out_indices=(2, 3, 4),
frozen_stages=-1,
use_depthwise=False,
arch_ovewrite=None,
spp_kernal_sizes=(5, 9, 13),
conv_cfg=None,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
norm_eval=False,
init_cfg=dict(
type='Kaiming',
layer='Conv2d',
a=math.sqrt(5),
distribution='uniform',
mode='fan_in',
nonlinearity='leaky_relu')):
super().__init__(init_cfg)
arch_setting = self.arch_settings[arch]
if arch_ovewrite:
arch_setting = arch_ovewrite
assert set(out_indices).issubset(
i for i in range(len(arch_setting) + 1))
if frozen_stages not in range(-1, len(arch_setting) + 1):
raise ValueError('frozen_stages must be in range(-1, '
'len(arch_setting) + 1). But received '
f'{frozen_stages}')
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.use_depthwise = use_depthwise
self.norm_eval = norm_eval
conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
self.stem = Focus(
3,
int(arch_setting[0][0] * widen_factor),
kernel_size=3,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.layers = ['stem']
for i, (in_channels, out_channels, num_blocks, add_identity,
use_spp) in enumerate(arch_setting):
in_channels = int(in_channels * widen_factor)
out_channels = int(out_channels * widen_factor)
num_blocks = max(round(num_blocks * deepen_factor), 1)
stage = []
conv_layer = conv(
in_channels,
out_channels,
3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
stage.append(conv_layer)
if use_spp:
spp = SPPBottleneck(
out_channels,
out_channels,
kernel_sizes=spp_kernal_sizes,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
stage.append(spp)
csp_layer = CSPLayer(
out_channels,
out_channels,
num_blocks=num_blocks,
add_identity=add_identity,
use_depthwise=use_depthwise,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
stage.append(csp_layer)
self.add_module(f'stage{i + 1}', nn.Sequential(*stage))
self.layers.append(f'stage{i + 1}')
def _freeze_stages(self):
if self.frozen_stages >= 0:
for i in range(self.frozen_stages + 1):
m = getattr(self, self.layers[i])
m.eval()
for param in m.parameters():
param.requires_grad = False
def train(self, mode=True):
super(CSPDarknet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
def forward(self, x):
outs = []
for i, layer_name in enumerate(self.layers):
layer = getattr(self, layer_name)
x = layer(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
|