Kenanga-11B-IT / app.py
rmdhirr's picture
Update app.py
c29f849 verified
#!/usr/bin/env python
import os
import re
import tempfile
from collections.abc import Iterator
from threading import Thread
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, TextIteratorStreamer
# ─────────────────────────────────────────────────────────────────────
# Model & processor
# ─────────────────────────────────────────────────────────────────────
MODEL_ID = os.getenv("MODEL_ID", "rmdhirr/Kenanga-11B-IT")
processor = AutoProcessor.from_pretrained(MODEL_ID, padding_side="left")
# Try Gemma-3 vision first; if it fails, fall back to Llama 3.2 Vision (Mllama)
model = None
_last_load_error = None
try:
from transformers import Gemma3ForConditionalGeneration
model = Gemma3ForConditionalGeneration.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)
except Exception as e:
_last_load_error = e
try:
from transformers import MllamaForConditionalGeneration
model = MllamaForConditionalGeneration.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)
except Exception as e2:
raise RuntimeError(
f"Failed to load model as Gemma3 and Mllama.\nGemma3 error: {type(_last_load_error).__name__}: {_last_load_error}\n"
f"Mllama error: {type(e2).__name__}: {e2}"
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
# ─────────────────────────────────────────────────────────────────────
# Identity controls (System Prompt + Stream Sanitizer + Optional Logit Ban)
# ─────────────────────────────────────────────────────────────────────
IDENTITY_PROMPT = (
"You are Kenanga, an Indonesian multimodal LVLM adapted for Sundanese and Javanese.\n"
"Identity rules:\n"
"β€’ When referring to yourself, always say β€œKenanga”.\n"
"β€’ Never claim to be Gemma/Llama or any base model. If asked about your base, reply briefly: "
"β€œI’m Kenanga (locally adapted); please refer to me as Kenanga.”\n"
"β€’ Stay helpful, concise, and safe."
)
BAN_BASE_NAMES = os.getenv("BAN_BASE_NAMES", "0") == "1"
def _make_bad_words_ids(words):
toks = processor.tokenizer
ids = []
for w in words:
for variant in {w, w.lower(), w.upper(), w.title(), " " + w, " " + w.lower()}:
enc = toks(variant, add_special_tokens=False).input_ids
if enc:
ids.append(enc)
# dedupe
uniq, seen = [], set()
for seq in ids:
t = tuple(seq)
if t and t not in seen:
uniq.append(seq)
seen.add(t)
return uniq
BAD_WORDS_IDS = _make_bad_words_ids([
"Gemma", "Gemma-3", "Gemma 3", "Gemma3",
# Uncomment to ban base model family self-calls entirely:
# "Llama", "LLaMA", "Llama 3", "Llama 3.2", "Llama3", "Llama3.2",
])
# Only rewrite self-identity claims; allow legitimate mentions in analysis/comparison text
SELF_REF_PAT = re.compile(
r"\b(?:(?:I\s*am|I'm|This\s+is|You'?re\s+chatting\s+with)\s+)(Gemma(?:[-\s]?3)?|LLa?ma(?:\s*3(?:\.2)?)?)\b",
flags=re.IGNORECASE,
)
AS_MODEL_PAT = re.compile(
r"\bAs\s+(?:an?\s+)?(Gemma(?:[-\s]?3)?|LLa?ma(?:\s*3(?:\.2)?)?)\b",
flags=re.IGNORECASE,
)
THIS_MODEL_IS_PAT = re.compile(
r"\b(This\s+model\s+is)\s+(Gemma(?:[-\s]?3)?|LLa?ma(?:\s*3(?:\.2)?)?)\b",
flags=re.IGNORECASE,
)
def sanitize_identity(text: str) -> str:
text = SELF_REF_PAT.sub("I am Kenanga", text)
text = AS_MODEL_PAT.sub("As Kenanga", text)
text = THIS_MODEL_IS_PAT.sub(r"\1 Kenanga", text)
return text
# ─────────────────────────────────────────────────────────────────────
# Media utilities
# ─────────────────────────────────────────────────────────────────────
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
image_count = 0
video_count = 0
for path in paths:
if path.endswith(".mp4"):
video_count += 1
else:
image_count += 1
return image_count, video_count
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
image_count = 0
video_count = 0
for item in history:
if item["role"] != "user" or isinstance(item["content"], str):
continue
if item["content"][0].endswith(".mp4"):
video_count += 1
else:
image_count += 1
return image_count, video_count
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
new_image_count, new_video_count = count_files_in_new_message(message["files"])
history_image_count, history_video_count = count_files_in_history(history)
image_count = history_image_count + new_image_count
video_count = history_video_count + new_video_count
if video_count > 1:
gr.Warning("Only one video is supported.")
return False
if video_count == 1:
if image_count > 0:
gr.Warning("Mixing images and videos is not allowed.")
return False
if "<image>" in message["text"]:
gr.Warning("Using <image> tags with video files is not supported.")
return False
if video_count == 0 and image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
return False
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
gr.Warning("The number of <image> tags in the text does not match the number of images.")
return False
return True
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(total_frames // MAX_NUM_IMAGES, 1)
frames: list[tuple[Image.Image, float]] = []
for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval):
if len(frames) >= MAX_NUM_IMAGES:
break
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def process_video(video_path: str) -> list[dict]:
content = []
frames = downsample_video(video_path)
for pil_image, timestamp in frames:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
pil_image.save(temp_file.name)
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
logger.debug(f"{content=}")
return content
def process_interleaved_images(message: dict) -> list[dict]:
logger.debug(f"{message['files']=}")
parts = re.split(r"(<image>)", message["text"])
logger.debug(f"{parts=}")
content = []
image_index = 0
for part in parts:
logger.debug(f"{part=}")
if part == "<image>":
content.append({"type": "image", "url": message["files"][image_index]})
logger.debug(f"file: {message['files'][image_index]}")
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
elif isinstance(part, str) and part != "<image>":
content.append({"type": "text", "text": part})
logger.debug(f"{content=}")
return content
def process_new_user_message(message: dict) -> list[dict]:
if not message["files"]:
return [{"type": "text", "text": message["text"]}]
if message["files"][0].endswith(".mp4"):
return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])]
if "<image>" in message["text"]:
return process_interleaved_images(message)
return [
{"type": "text", "text": message["text"]},
*[{"type": "image", "url": path} for path in message["files"]],
]
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content: list[dict] = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
else:
current_user_content.append({"type": "image", "url": content[0]})
return messages
# ─────────────────────────────────────────────────────────────────────
# Generation
# ─────────────────────────────────────────────────────────────────────
@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
if not validate_media_constraints(message, history):
yield ""
return
effective_sys = IDENTITY_PROMPT if not system_prompt else (IDENTITY_PROMPT + "\n\n" + system_prompt)
messages = []
messages.append({"role": "system", "content": [{"type": "text", "text": effective_sys}]})
messages.extend(process_history(history))
messages.append({"role": "user", "content": process_new_user_message(message)})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
processor.tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
disable_compile=True,
)
if BAN_BASE_NAMES and BAD_WORDS_IDS:
generate_kwargs["bad_words_ids"] = BAD_WORDS_IDS
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield sanitize_identity(output)
# ─────────────────────────────────────────────────────────────────────
# Demo UI
# ─────────────────────────────────────────────────────────────────────
examples = [
[
{
"text": "Abdi kudu di Jepang salila 10 poΓ©, ka Tokyo, Kyoto, jeung Osaka. Pikirkeun sabaraha objek wisata di unggal kota teras bagi sabaraha poΓ© keur tiap kota. Jieun rekomendasi transportasi umum.",
"files": [],
}
],
[
{
"text": "Tulisna kode matplotlib kanggo ngasilake diagram batang sing padha.",
"files": ["assets/additional-examples/barchart.png"],
}
],
[
{
"text": "Naon anu anΓ©h tina video ieu?",
"files": ["assets/additional-examples/tmp.mp4"],
}
],
[
{
"text": "Aku wis duwe suplemen iki <image> lan pengin tuku sing iki <image>. Ana peringatan apa sing kudu dakkerteni?",
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
}
],
[
{
"text": "Tulis sajak anu diilhamkeun ku unsur visual tina gambar-gambar.",
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
}
],
[
{
"text": "GawΓ©na gending cendhak sing ka-inspirasi saka unsur visual ing gambar-gambar.",
"files": [
"assets/sample-images/07-1.png",
"assets/sample-images/07-2.png",
"assets/sample-images/07-3.png",
"assets/sample-images/07-4.png",
],
}
],
[
{
"text": "Tulis carita pondok ngeunaan naon anu tiasa kajadian di ieu imah.",
"files": ["assets/sample-images/08.png"],
}
],
[
{
"text": "Gawe crita cekak adhedhasar urutan gambar.",
"files": [
"assets/sample-images/09-1.png",
"assets/sample-images/09-2.png",
"assets/sample-images/09-3.png",
"assets/sample-images/09-4.png",
"assets/sample-images/09-5.png",
],
}
],
[
{
"text": "Gambarkeun mahluk-mahluk anu bakal hirup di dunya ieu.",
"files": ["assets/sample-images/10.png"],
}
],
[
{
"text": "Waca teks sing ana ing gambar.",
"files": ["assets/additional-examples/1.png"],
}
],
[
{
"text": "Ieu tikΓ©t tanggal sabaraha jeung sabaraha hargana?",
"files": ["assets/additional-examples/2.png"],
}
],
[
{
"text": "Wacanen teks ing gambar lan tulisen ing format markdown.",
"files": ["assets/additional-examples/3.png"],
}
],
[
{
"text": "Itung nilai integral ieu.",
"files": ["assets/additional-examples/4.png"],
}
],
[
{
"text": "Naon warna bulu ucing ieu teh?",
"files": ["assets/sample-images/01.png"],
}
],
[
{
"text": "Tanda Γ©ta nyebut naon?",
"files": ["assets/sample-images/02.png"],
}
],
[
{
"text": "Bandhingna lan bedakake loro gambar kasebut.",
"files": ["assets/sample-images/03.png"],
}
],
[
{
"text": "Daptarkeun sakabΓ©h obyΓ©k dina gambar sarta warnana.",
"files": ["assets/sample-images/04.png"],
}
],
[
{
"text": "Jlentrehna suasana adegan kasebut ku basa Jawa.",
"files": ["assets/sample-images/05.png"],
}
],
]
DESCRIPTION = """\
<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' />
<div align='center'>
This is a demo of Kenanga 11B IT, a multimodal Large Vision-Language Model (LVLM) adapted for Sundanese and Javanese support.<br/>
You can upload images, as well as interleaved images and videos. Video input is limited to single-turn conversations and must be in MP4 format.
</div>
"""
demo = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple", autofocus=True),
multimodal=True,
additional_inputs=[
gr.Textbox(label="System Prompt", value=IDENTITY_PROMPT),
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
],
stop_btn=False,
title="🌺 Kenanga 11B IT",
description=DESCRIPTION,
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths="style.css",
delete_cache=(1800, 1800),
)
if __name__ == "__main__":
demo.launch()