File size: 16,701 Bytes
cce7407
 
 
 
 
 
 
 
 
2c50419
cce7407
 
 
 
c29f849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce7407
c29f849
 
 
 
 
 
 
 
 
 
cce7407
 
c29f849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce7407
c29f849
 
 
 
 
cce7407
c29f849
 
 
cce7407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29f849
cce7407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29f849
 
 
cce7407
 
 
 
 
 
c29f849
 
cce7407
c29f849
cce7407
 
 
 
 
 
 
 
 
 
 
c29f849
 
 
 
cce7407
 
 
 
 
 
c29f849
 
 
cce7407
 
 
 
 
 
c29f849
cce7407
c29f849
 
 
cce7407
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
38cc5c9
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
 
 
 
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
 
 
 
 
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
38cc5c9
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
2c9a88a
cce7407
 
 
 
 
38cc5c9
cce7407
 
 
 
 
 
 
098ac20
c29f849
fda6d82
098ac20
cce7407
2c50419
cce7407
 
 
 
 
 
 
c29f849
cce7407
 
 
47881c3
cce7407
 
 
 
 
 
 
2c50419
cce7407
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#!/usr/bin/env python

import os
import re
import tempfile
from collections.abc import Iterator
from threading import Thread

import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, TextIteratorStreamer

# ─────────────────────────────────────────────────────────────────────
# Model & processor
# ─────────────────────────────────────────────────────────────────────
MODEL_ID = os.getenv("MODEL_ID", "rmdhirr/Kenanga-11B-IT")
processor = AutoProcessor.from_pretrained(MODEL_ID, padding_side="left")

# Try Gemma-3 vision first; if it fails, fall back to Llama 3.2 Vision (Mllama)
model = None
_last_load_error = None
try:
    from transformers import Gemma3ForConditionalGeneration
    model = Gemma3ForConditionalGeneration.from_pretrained(
        MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
    )
except Exception as e:
    _last_load_error = e
    try:
        from transformers import MllamaForConditionalGeneration
        model = MllamaForConditionalGeneration.from_pretrained(
            MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
        )
    except Exception as e2:
        raise RuntimeError(
            f"Failed to load model as Gemma3 and Mllama.\nGemma3 error: {type(_last_load_error).__name__}: {_last_load_error}\n"
            f"Mllama error: {type(e2).__name__}: {e2}"
        )

MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))

# ─────────────────────────────────────────────────────────────────────
# Identity controls (System Prompt + Stream Sanitizer + Optional Logit Ban)
# ─────────────────────────────────────────────────────────────────────
IDENTITY_PROMPT = (
    "You are Kenanga, an Indonesian multimodal LVLM adapted for Sundanese and Javanese.\n"
    "Identity rules:\n"
    "β€’ When referring to yourself, always say β€œKenanga”.\n"
    "β€’ Never claim to be Gemma/Llama or any base model. If asked about your base, reply briefly: "
    "β€œI’m Kenanga (locally adapted); please refer to me as Kenanga.”\n"
    "β€’ Stay helpful, concise, and safe."
)

BAN_BASE_NAMES = os.getenv("BAN_BASE_NAMES", "0") == "1"

def _make_bad_words_ids(words):
    toks = processor.tokenizer
    ids = []
    for w in words:
        for variant in {w, w.lower(), w.upper(), w.title(), " " + w, " " + w.lower()}:
            enc = toks(variant, add_special_tokens=False).input_ids
            if enc:
                ids.append(enc)
    # dedupe
    uniq, seen = [], set()
    for seq in ids:
        t = tuple(seq)
        if t and t not in seen:
            uniq.append(seq)
            seen.add(t)
    return uniq

BAD_WORDS_IDS = _make_bad_words_ids([
    "Gemma", "Gemma-3", "Gemma 3", "Gemma3",
    # Uncomment to ban base model family self-calls entirely:
    # "Llama", "LLaMA", "Llama 3", "Llama 3.2", "Llama3", "Llama3.2",
])

# Only rewrite self-identity claims; allow legitimate mentions in analysis/comparison text
SELF_REF_PAT = re.compile(
    r"\b(?:(?:I\s*am|I'm|This\s+is|You'?re\s+chatting\s+with)\s+)(Gemma(?:[-\s]?3)?|LLa?ma(?:\s*3(?:\.2)?)?)\b",
    flags=re.IGNORECASE,
)
AS_MODEL_PAT = re.compile(
    r"\bAs\s+(?:an?\s+)?(Gemma(?:[-\s]?3)?|LLa?ma(?:\s*3(?:\.2)?)?)\b",
    flags=re.IGNORECASE,
)
THIS_MODEL_IS_PAT = re.compile(
    r"\b(This\s+model\s+is)\s+(Gemma(?:[-\s]?3)?|LLa?ma(?:\s*3(?:\.2)?)?)\b",
    flags=re.IGNORECASE,
)

def sanitize_identity(text: str) -> str:
    text = SELF_REF_PAT.sub("I am Kenanga", text)
    text = AS_MODEL_PAT.sub("As Kenanga", text)
    text = THIS_MODEL_IS_PAT.sub(r"\1 Kenanga", text)
    return text

# ─────────────────────────────────────────────────────────────────────
# Media utilities
# ─────────────────────────────────────────────────────────────────────
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for path in paths:
        if path.endswith(".mp4"):
            video_count += 1
        else:
            image_count += 1
    return image_count, video_count

def count_files_in_history(history: list[dict]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for item in history:
        if item["role"] != "user" or isinstance(item["content"], str):
            continue
        if item["content"][0].endswith(".mp4"):
            video_count += 1
        else:
            image_count += 1
    return image_count, video_count

def validate_media_constraints(message: dict, history: list[dict]) -> bool:
    new_image_count, new_video_count = count_files_in_new_message(message["files"])
    history_image_count, history_video_count = count_files_in_history(history)
    image_count = history_image_count + new_image_count
    video_count = history_video_count + new_video_count
    if video_count > 1:
        gr.Warning("Only one video is supported.")
        return False
    if video_count == 1:
        if image_count > 0:
            gr.Warning("Mixing images and videos is not allowed.")
            return False
        if "<image>" in message["text"]:
            gr.Warning("Using <image> tags with video files is not supported.")
            return False
    if video_count == 0 and image_count > MAX_NUM_IMAGES:
        gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
        return False
    if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
        gr.Warning("The number of <image> tags in the text does not match the number of images.")
        return False
    return True

def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = max(total_frames // MAX_NUM_IMAGES, 1)
    frames: list[tuple[Image.Image, float]] = []
    for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval):
        if len(frames) >= MAX_NUM_IMAGES:
            break
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

def process_video(video_path: str) -> list[dict]:
    content = []
    frames = downsample_video(video_path)
    for pil_image, timestamp in frames:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            pil_image.save(temp_file.name)
            content.append({"type": "text", "text": f"Frame {timestamp}:"})
            content.append({"type": "image", "url": temp_file.name})
    logger.debug(f"{content=}")
    return content

def process_interleaved_images(message: dict) -> list[dict]:
    logger.debug(f"{message['files']=}")
    parts = re.split(r"(<image>)", message["text"])
    logger.debug(f"{parts=}")
    content = []
    image_index = 0
    for part in parts:
        logger.debug(f"{part=}")
        if part == "<image>":
            content.append({"type": "image", "url": message["files"][image_index]})
            logger.debug(f"file: {message['files'][image_index]}")
            image_index += 1
        elif part.strip():
            content.append({"type": "text", "text": part.strip()})
        elif isinstance(part, str) and part != "<image>":
            content.append({"type": "text", "text": part})
    logger.debug(f"{content=}")
    return content

def process_new_user_message(message: dict) -> list[dict]:
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}]
    if message["files"][0].endswith(".mp4"):
        return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])]
    if "<image>" in message["text"]:
        return process_interleaved_images(message)
    return [
        {"type": "text", "text": message["text"]},
        *[{"type": "image", "url": path} for path in message["files"]],
    ]

def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            else:
                current_user_content.append({"type": "image", "url": content[0]})
    return messages

# ─────────────────────────────────────────────────────────────────────
# Generation
# ─────────────────────────────────────────────────────────────────────
@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
    if not validate_media_constraints(message, history):
        yield ""
        return

    effective_sys = IDENTITY_PROMPT if not system_prompt else (IDENTITY_PROMPT + "\n\n" + system_prompt)

    messages = []
    messages.append({"role": "system", "content": [{"type": "text", "text": effective_sys}]})
    messages.extend(process_history(history))
    messages.append({"role": "user", "content": process_new_user_message(message)})

    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    ).to(device=model.device, dtype=torch.bfloat16)

    streamer = TextIteratorStreamer(
        processor.tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True
    )

    generate_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        disable_compile=True,
    )
    if BAN_BASE_NAMES and BAD_WORDS_IDS:
        generate_kwargs["bad_words_ids"] = BAD_WORDS_IDS

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    output = ""
    for delta in streamer:
        output += delta
        yield sanitize_identity(output)

# ─────────────────────────────────────────────────────────────────────
# Demo UI
# ─────────────────────────────────────────────────────────────────────
examples = [
    [
        {
            "text": "Abdi kudu di Jepang salila 10 poΓ©, ka Tokyo, Kyoto, jeung Osaka. Pikirkeun sabaraha objek wisata di unggal kota teras bagi sabaraha poΓ© keur tiap kota. Jieun rekomendasi transportasi umum.",
            "files": [],
        }
    ],
    [
        {
            "text": "Tulisna kode matplotlib kanggo ngasilake diagram batang sing padha.",
            "files": ["assets/additional-examples/barchart.png"],
        }
    ],
    [
        {
            "text": "Naon anu anΓ©h tina video ieu?",
            "files": ["assets/additional-examples/tmp.mp4"],
        }
    ],
    [
        {
            "text": "Aku wis duwe suplemen iki <image> lan pengin tuku sing iki <image>. Ana peringatan apa sing kudu dakkerteni?",
            "files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
        }
    ],
    [
        {
            "text": "Tulis sajak anu diilhamkeun ku unsur visual tina gambar-gambar.",
            "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
        }
    ],
    [
        {
            "text": "GawΓ©na gending cendhak sing ka-inspirasi saka unsur visual ing gambar-gambar.",
            "files": [
                "assets/sample-images/07-1.png",
                "assets/sample-images/07-2.png",
                "assets/sample-images/07-3.png",
                "assets/sample-images/07-4.png",
            ],
        }
    ],
    [
        {
            "text": "Tulis carita pondok ngeunaan naon anu tiasa kajadian di ieu imah.",
            "files": ["assets/sample-images/08.png"],
        }
    ],
    [
        {
            "text": "Gawe crita cekak adhedhasar urutan gambar.",
            "files": [
                "assets/sample-images/09-1.png",
                "assets/sample-images/09-2.png",
                "assets/sample-images/09-3.png",
                "assets/sample-images/09-4.png",
                "assets/sample-images/09-5.png",
            ],
        }
    ],
    [
        {
            "text": "Gambarkeun mahluk-mahluk anu bakal hirup di dunya ieu.",
            "files": ["assets/sample-images/10.png"],
        }
    ],
    [
        {
            "text": "Waca teks sing ana ing gambar.",
            "files": ["assets/additional-examples/1.png"],
        }
    ],
    [
        {
            "text": "Ieu tikΓ©t tanggal sabaraha jeung sabaraha hargana?",
            "files": ["assets/additional-examples/2.png"],
        }
    ],
    [
        {
            "text": "Wacanen teks ing gambar lan tulisen ing format markdown.",
            "files": ["assets/additional-examples/3.png"],
        }
    ],
    [
        {
            "text": "Itung nilai integral ieu.",
            "files": ["assets/additional-examples/4.png"],
        }
    ],
    [
        {
            "text": "Naon warna bulu ucing ieu teh?",
            "files": ["assets/sample-images/01.png"],
        }
    ],
    [
        {
            "text": "Tanda Γ©ta nyebut naon?",
            "files": ["assets/sample-images/02.png"],
        }
    ],
    [
        {
            "text": "Bandhingna lan bedakake loro gambar kasebut.",
            "files": ["assets/sample-images/03.png"],
        }
    ],
    [
        {
            "text": "Daptarkeun sakabΓ©h obyΓ©k dina gambar sarta warnana.",
            "files": ["assets/sample-images/04.png"],
        }
    ],
    [
        {
            "text": "Jlentrehna suasana adegan kasebut ku basa Jawa.",
            "files": ["assets/sample-images/05.png"],
        }
    ],
]

DESCRIPTION = """\
<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' />
<div align='center'>
This is a demo of Kenanga 11B IT, a multimodal Large Vision-Language Model (LVLM) adapted for Sundanese and Javanese support.<br/>
You can upload images, as well as interleaved images and videos. Video input is limited to single-turn conversations and must be in MP4 format.
</div>
"""

demo = gr.ChatInterface(
    fn=run,
    type="messages",
    chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
    textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple", autofocus=True),
    multimodal=True,
    additional_inputs=[
        gr.Textbox(label="System Prompt", value=IDENTITY_PROMPT),
        gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
    ],
    stop_btn=False,
    title="🌺 Kenanga 11B IT",
    description=DESCRIPTION,
    examples=examples,
    run_examples_on_click=False,
    cache_examples=False,
    css_paths="style.css",
    delete_cache=(1800, 1800),
)

if __name__ == "__main__":
    demo.launch()