Spaces:
Sleeping
Sleeping
File size: 16,701 Bytes
cce7407 2c50419 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 c29f849 cce7407 2c9a88a cce7407 2c9a88a cce7407 38cc5c9 cce7407 2c9a88a cce7407 2c9a88a cce7407 2c9a88a cce7407 2c9a88a cce7407 2c9a88a cce7407 2c9a88a cce7407 2c9a88a cce7407 2c9a88a cce7407 2c9a88a cce7407 2c9a88a cce7407 38cc5c9 cce7407 2c9a88a cce7407 2c9a88a cce7407 2c9a88a cce7407 38cc5c9 cce7407 098ac20 c29f849 fda6d82 098ac20 cce7407 2c50419 cce7407 c29f849 cce7407 47881c3 cce7407 2c50419 cce7407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
#!/usr/bin/env python
import os
import re
import tempfile
from collections.abc import Iterator
from threading import Thread
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, TextIteratorStreamer
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Model & processor
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
MODEL_ID = os.getenv("MODEL_ID", "rmdhirr/Kenanga-11B-IT")
processor = AutoProcessor.from_pretrained(MODEL_ID, padding_side="left")
# Try Gemma-3 vision first; if it fails, fall back to Llama 3.2 Vision (Mllama)
model = None
_last_load_error = None
try:
from transformers import Gemma3ForConditionalGeneration
model = Gemma3ForConditionalGeneration.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)
except Exception as e:
_last_load_error = e
try:
from transformers import MllamaForConditionalGeneration
model = MllamaForConditionalGeneration.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)
except Exception as e2:
raise RuntimeError(
f"Failed to load model as Gemma3 and Mllama.\nGemma3 error: {type(_last_load_error).__name__}: {_last_load_error}\n"
f"Mllama error: {type(e2).__name__}: {e2}"
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Identity controls (System Prompt + Stream Sanitizer + Optional Logit Ban)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
IDENTITY_PROMPT = (
"You are Kenanga, an Indonesian multimodal LVLM adapted for Sundanese and Javanese.\n"
"Identity rules:\n"
"β’ When referring to yourself, always say βKenangaβ.\n"
"β’ Never claim to be Gemma/Llama or any base model. If asked about your base, reply briefly: "
"βIβm Kenanga (locally adapted); please refer to me as Kenanga.β\n"
"β’ Stay helpful, concise, and safe."
)
BAN_BASE_NAMES = os.getenv("BAN_BASE_NAMES", "0") == "1"
def _make_bad_words_ids(words):
toks = processor.tokenizer
ids = []
for w in words:
for variant in {w, w.lower(), w.upper(), w.title(), " " + w, " " + w.lower()}:
enc = toks(variant, add_special_tokens=False).input_ids
if enc:
ids.append(enc)
# dedupe
uniq, seen = [], set()
for seq in ids:
t = tuple(seq)
if t and t not in seen:
uniq.append(seq)
seen.add(t)
return uniq
BAD_WORDS_IDS = _make_bad_words_ids([
"Gemma", "Gemma-3", "Gemma 3", "Gemma3",
# Uncomment to ban base model family self-calls entirely:
# "Llama", "LLaMA", "Llama 3", "Llama 3.2", "Llama3", "Llama3.2",
])
# Only rewrite self-identity claims; allow legitimate mentions in analysis/comparison text
SELF_REF_PAT = re.compile(
r"\b(?:(?:I\s*am|I'm|This\s+is|You'?re\s+chatting\s+with)\s+)(Gemma(?:[-\s]?3)?|LLa?ma(?:\s*3(?:\.2)?)?)\b",
flags=re.IGNORECASE,
)
AS_MODEL_PAT = re.compile(
r"\bAs\s+(?:an?\s+)?(Gemma(?:[-\s]?3)?|LLa?ma(?:\s*3(?:\.2)?)?)\b",
flags=re.IGNORECASE,
)
THIS_MODEL_IS_PAT = re.compile(
r"\b(This\s+model\s+is)\s+(Gemma(?:[-\s]?3)?|LLa?ma(?:\s*3(?:\.2)?)?)\b",
flags=re.IGNORECASE,
)
def sanitize_identity(text: str) -> str:
text = SELF_REF_PAT.sub("I am Kenanga", text)
text = AS_MODEL_PAT.sub("As Kenanga", text)
text = THIS_MODEL_IS_PAT.sub(r"\1 Kenanga", text)
return text
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Media utilities
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
image_count = 0
video_count = 0
for path in paths:
if path.endswith(".mp4"):
video_count += 1
else:
image_count += 1
return image_count, video_count
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
image_count = 0
video_count = 0
for item in history:
if item["role"] != "user" or isinstance(item["content"], str):
continue
if item["content"][0].endswith(".mp4"):
video_count += 1
else:
image_count += 1
return image_count, video_count
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
new_image_count, new_video_count = count_files_in_new_message(message["files"])
history_image_count, history_video_count = count_files_in_history(history)
image_count = history_image_count + new_image_count
video_count = history_video_count + new_video_count
if video_count > 1:
gr.Warning("Only one video is supported.")
return False
if video_count == 1:
if image_count > 0:
gr.Warning("Mixing images and videos is not allowed.")
return False
if "<image>" in message["text"]:
gr.Warning("Using <image> tags with video files is not supported.")
return False
if video_count == 0 and image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
return False
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
gr.Warning("The number of <image> tags in the text does not match the number of images.")
return False
return True
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(total_frames // MAX_NUM_IMAGES, 1)
frames: list[tuple[Image.Image, float]] = []
for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval):
if len(frames) >= MAX_NUM_IMAGES:
break
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def process_video(video_path: str) -> list[dict]:
content = []
frames = downsample_video(video_path)
for pil_image, timestamp in frames:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
pil_image.save(temp_file.name)
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
logger.debug(f"{content=}")
return content
def process_interleaved_images(message: dict) -> list[dict]:
logger.debug(f"{message['files']=}")
parts = re.split(r"(<image>)", message["text"])
logger.debug(f"{parts=}")
content = []
image_index = 0
for part in parts:
logger.debug(f"{part=}")
if part == "<image>":
content.append({"type": "image", "url": message["files"][image_index]})
logger.debug(f"file: {message['files'][image_index]}")
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
elif isinstance(part, str) and part != "<image>":
content.append({"type": "text", "text": part})
logger.debug(f"{content=}")
return content
def process_new_user_message(message: dict) -> list[dict]:
if not message["files"]:
return [{"type": "text", "text": message["text"]}]
if message["files"][0].endswith(".mp4"):
return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])]
if "<image>" in message["text"]:
return process_interleaved_images(message)
return [
{"type": "text", "text": message["text"]},
*[{"type": "image", "url": path} for path in message["files"]],
]
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content: list[dict] = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
else:
current_user_content.append({"type": "image", "url": content[0]})
return messages
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Generation
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
if not validate_media_constraints(message, history):
yield ""
return
effective_sys = IDENTITY_PROMPT if not system_prompt else (IDENTITY_PROMPT + "\n\n" + system_prompt)
messages = []
messages.append({"role": "system", "content": [{"type": "text", "text": effective_sys}]})
messages.extend(process_history(history))
messages.append({"role": "user", "content": process_new_user_message(message)})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
processor.tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
disable_compile=True,
)
if BAN_BASE_NAMES and BAD_WORDS_IDS:
generate_kwargs["bad_words_ids"] = BAD_WORDS_IDS
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield sanitize_identity(output)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Demo UI
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
examples = [
[
{
"text": "Abdi kudu di Jepang salila 10 poΓ©, ka Tokyo, Kyoto, jeung Osaka. Pikirkeun sabaraha objek wisata di unggal kota teras bagi sabaraha poΓ© keur tiap kota. Jieun rekomendasi transportasi umum.",
"files": [],
}
],
[
{
"text": "Tulisna kode matplotlib kanggo ngasilake diagram batang sing padha.",
"files": ["assets/additional-examples/barchart.png"],
}
],
[
{
"text": "Naon anu anΓ©h tina video ieu?",
"files": ["assets/additional-examples/tmp.mp4"],
}
],
[
{
"text": "Aku wis duwe suplemen iki <image> lan pengin tuku sing iki <image>. Ana peringatan apa sing kudu dakkerteni?",
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
}
],
[
{
"text": "Tulis sajak anu diilhamkeun ku unsur visual tina gambar-gambar.",
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
}
],
[
{
"text": "GawΓ©na gending cendhak sing ka-inspirasi saka unsur visual ing gambar-gambar.",
"files": [
"assets/sample-images/07-1.png",
"assets/sample-images/07-2.png",
"assets/sample-images/07-3.png",
"assets/sample-images/07-4.png",
],
}
],
[
{
"text": "Tulis carita pondok ngeunaan naon anu tiasa kajadian di ieu imah.",
"files": ["assets/sample-images/08.png"],
}
],
[
{
"text": "Gawe crita cekak adhedhasar urutan gambar.",
"files": [
"assets/sample-images/09-1.png",
"assets/sample-images/09-2.png",
"assets/sample-images/09-3.png",
"assets/sample-images/09-4.png",
"assets/sample-images/09-5.png",
],
}
],
[
{
"text": "Gambarkeun mahluk-mahluk anu bakal hirup di dunya ieu.",
"files": ["assets/sample-images/10.png"],
}
],
[
{
"text": "Waca teks sing ana ing gambar.",
"files": ["assets/additional-examples/1.png"],
}
],
[
{
"text": "Ieu tikΓ©t tanggal sabaraha jeung sabaraha hargana?",
"files": ["assets/additional-examples/2.png"],
}
],
[
{
"text": "Wacanen teks ing gambar lan tulisen ing format markdown.",
"files": ["assets/additional-examples/3.png"],
}
],
[
{
"text": "Itung nilai integral ieu.",
"files": ["assets/additional-examples/4.png"],
}
],
[
{
"text": "Naon warna bulu ucing ieu teh?",
"files": ["assets/sample-images/01.png"],
}
],
[
{
"text": "Tanda Γ©ta nyebut naon?",
"files": ["assets/sample-images/02.png"],
}
],
[
{
"text": "Bandhingna lan bedakake loro gambar kasebut.",
"files": ["assets/sample-images/03.png"],
}
],
[
{
"text": "Daptarkeun sakabΓ©h obyΓ©k dina gambar sarta warnana.",
"files": ["assets/sample-images/04.png"],
}
],
[
{
"text": "Jlentrehna suasana adegan kasebut ku basa Jawa.",
"files": ["assets/sample-images/05.png"],
}
],
]
DESCRIPTION = """\
<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' />
<div align='center'>
This is a demo of Kenanga 11B IT, a multimodal Large Vision-Language Model (LVLM) adapted for Sundanese and Javanese support.<br/>
You can upload images, as well as interleaved images and videos. Video input is limited to single-turn conversations and must be in MP4 format.
</div>
"""
demo = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple", autofocus=True),
multimodal=True,
additional_inputs=[
gr.Textbox(label="System Prompt", value=IDENTITY_PROMPT),
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
],
stop_btn=False,
title="πΊ Kenanga 11B IT",
description=DESCRIPTION,
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths="style.css",
delete_cache=(1800, 1800),
)
if __name__ == "__main__":
demo.launch() |