Spaces:
Running
Running
Upload 17 files
Browse files- configs/config.json +90 -0
- filelists/test.txt +7 -0
- filelists/train.txt +0 -0
- filelists/val.txt +6 -0
- hubert/__init__.py +0 -0
- hubert/__pycache__/__init__.cpython-310.pyc +0 -0
- hubert/__pycache__/hubert_model.cpython-310.pyc +0 -0
- hubert/app.py +70 -0
- hubert/hubert-soft-0d54a1f4.pt +3 -0
- hubert/hubert_model.py +222 -0
- hubert/put_hubert_ckpt_here +0 -0
- inference/__init__.py +0 -0
- inference/__pycache__/__init__.cpython-310.pyc +0 -0
- inference/__pycache__/infer_tool.cpython-310.pyc +0 -0
- inference/chunks_temp.json +1 -0
- inference/infer_tool.py +326 -0
- inference/slicer.py +158 -0
configs/config.json
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 200,
|
| 4 |
+
"eval_interval": 1000,
|
| 5 |
+
"seed": 1234,
|
| 6 |
+
"epochs": 10000,
|
| 7 |
+
"learning_rate": 0.0001,
|
| 8 |
+
"betas": [
|
| 9 |
+
0.8,
|
| 10 |
+
0.99
|
| 11 |
+
],
|
| 12 |
+
"eps": 1e-09,
|
| 13 |
+
"batch_size": 12,
|
| 14 |
+
"fp16_run": false,
|
| 15 |
+
"lr_decay": 0.999875,
|
| 16 |
+
"segment_size": 17920,
|
| 17 |
+
"init_lr_ratio": 1,
|
| 18 |
+
"warmup_epochs": 0,
|
| 19 |
+
"c_mel": 45,
|
| 20 |
+
"c_kl": 1.0,
|
| 21 |
+
"use_sr": true,
|
| 22 |
+
"max_speclen": 384,
|
| 23 |
+
"port": "8001"
|
| 24 |
+
},
|
| 25 |
+
"data": {
|
| 26 |
+
"training_files": "filelists/train.txt",
|
| 27 |
+
"validation_files": "filelists/val.txt",
|
| 28 |
+
"max_wav_value": 32768.0,
|
| 29 |
+
"sampling_rate": 32000,
|
| 30 |
+
"filter_length": 1280,
|
| 31 |
+
"hop_length": 320,
|
| 32 |
+
"win_length": 1280,
|
| 33 |
+
"n_mel_channels": 80,
|
| 34 |
+
"mel_fmin": 0.0,
|
| 35 |
+
"mel_fmax": null
|
| 36 |
+
},
|
| 37 |
+
"model": {
|
| 38 |
+
"inter_channels": 192,
|
| 39 |
+
"hidden_channels": 192,
|
| 40 |
+
"filter_channels": 768,
|
| 41 |
+
"n_heads": 2,
|
| 42 |
+
"n_layers": 6,
|
| 43 |
+
"kernel_size": 3,
|
| 44 |
+
"p_dropout": 0.1,
|
| 45 |
+
"resblock": "1",
|
| 46 |
+
"resblock_kernel_sizes": [
|
| 47 |
+
3,
|
| 48 |
+
7,
|
| 49 |
+
11
|
| 50 |
+
],
|
| 51 |
+
"resblock_dilation_sizes": [
|
| 52 |
+
[
|
| 53 |
+
1,
|
| 54 |
+
3,
|
| 55 |
+
5
|
| 56 |
+
],
|
| 57 |
+
[
|
| 58 |
+
1,
|
| 59 |
+
3,
|
| 60 |
+
5
|
| 61 |
+
],
|
| 62 |
+
[
|
| 63 |
+
1,
|
| 64 |
+
3,
|
| 65 |
+
5
|
| 66 |
+
]
|
| 67 |
+
],
|
| 68 |
+
"upsample_rates": [
|
| 69 |
+
10,
|
| 70 |
+
8,
|
| 71 |
+
2,
|
| 72 |
+
2
|
| 73 |
+
],
|
| 74 |
+
"upsample_initial_channel": 512,
|
| 75 |
+
"upsample_kernel_sizes": [
|
| 76 |
+
16,
|
| 77 |
+
16,
|
| 78 |
+
4,
|
| 79 |
+
4
|
| 80 |
+
],
|
| 81 |
+
"n_layers_q": 3,
|
| 82 |
+
"use_spectral_norm": false,
|
| 83 |
+
"gin_channels": 256,
|
| 84 |
+
"ssl_dim": 256,
|
| 85 |
+
"n_speakers": 2
|
| 86 |
+
},
|
| 87 |
+
"spk": {
|
| 88 |
+
"Ztech": 0
|
| 89 |
+
}
|
| 90 |
+
}
|
filelists/test.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
./dataset/32k/yunhao/001829.wav
|
| 2 |
+
./dataset/32k/yunhao/001827.wav
|
| 3 |
+
./dataset/32k/jishuang/000104.wav
|
| 4 |
+
./dataset/32k/nen/kne110_005.wav
|
| 5 |
+
./dataset/32k/nen/kne110_004.wav
|
| 6 |
+
./dataset/32k/jishuang/000223.wav
|
| 7 |
+
./dataset/32k/yunhao/001828.wav
|
filelists/train.txt
ADDED
|
File without changes
|
filelists/val.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
./dataset/32k/nen/kne110_005.wav
|
| 2 |
+
./dataset/32k/yunhao/001827.wav
|
| 3 |
+
./dataset/32k/jishuang/000104.wav
|
| 4 |
+
./dataset/32k/jishuang/000223.wav
|
| 5 |
+
./dataset/32k/nen/kne110_004.wav
|
| 6 |
+
./dataset/32k/yunhao/001828.wav
|
hubert/__init__.py
ADDED
|
File without changes
|
hubert/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (127 Bytes). View file
|
|
|
hubert/__pycache__/hubert_model.cpython-310.pyc
ADDED
|
Binary file (7.52 kB). View file
|
|
|
hubert/app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import librosa
|
| 5 |
+
import numpy as np
|
| 6 |
+
import soundfile
|
| 7 |
+
import torch
|
| 8 |
+
from inference.infer_tool import Svc
|
| 9 |
+
import logging
|
| 10 |
+
|
| 11 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
| 12 |
+
|
| 13 |
+
model_name = "logs/32k/G_98000.pth"
|
| 14 |
+
config_name = "configs/config.json"
|
| 15 |
+
|
| 16 |
+
svc_model = Svc(model_name, config_name)
|
| 17 |
+
sid_map = {
|
| 18 |
+
"Ztech": "Ztech"
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def vc_fn(sid, input_audio, vc_transform):
|
| 23 |
+
if input_audio is None:
|
| 24 |
+
return "You need to upload an audio", None
|
| 25 |
+
sampling_rate, audio = input_audio
|
| 26 |
+
# print(audio.shape,sampling_rate)
|
| 27 |
+
duration = audio.shape[0] / sampling_rate
|
| 28 |
+
if duration > 45:
|
| 29 |
+
return "请上传小于45s的音频,需要转换长音频请本地进行转换", None
|
| 30 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
| 31 |
+
if len(audio.shape) > 1:
|
| 32 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
| 33 |
+
if sampling_rate != 16000:
|
| 34 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
| 35 |
+
print(audio.shape)
|
| 36 |
+
out_wav_path = io.BytesIO()
|
| 37 |
+
soundfile.write(out_wav_path, audio, 16000, format="wav")
|
| 38 |
+
out_wav_path.seek(0)
|
| 39 |
+
|
| 40 |
+
sid = sid_map[sid]
|
| 41 |
+
out_audio, out_sr = svc_model.infer(sid, vc_transform, out_wav_path)
|
| 42 |
+
_audio = out_audio.cpu().numpy()
|
| 43 |
+
return "Success", (32000, _audio)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
app = gr.Blocks()
|
| 47 |
+
with app:
|
| 48 |
+
with gr.Tabs():
|
| 49 |
+
with gr.TabItem("Basic"):
|
| 50 |
+
gr.Markdown(value="""
|
| 51 |
+
这是sovits 3.0 32khz版本ai草莓猫taffy的在线demo
|
| 52 |
+
|
| 53 |
+
在使用此模型前请阅读[AI粘连科技模型使用协议](https://huggingface.co/spaces/reha/Stick_Tech/blob/main/terms.md)
|
| 54 |
+
|
| 55 |
+
粘连科技Official@bilibili:[点击关注](https://space.bilibili.com/248582596)
|
| 56 |
+
|
| 57 |
+
如果要在本地使用该demo,请使用git lfs clone 该仓库,安装requirements.txt后运行app.py即可
|
| 58 |
+
|
| 59 |
+
项目改写基于 https://huggingface.co/spaces/innnky/nyaru-svc-3.0
|
| 60 |
+
|
| 61 |
+
本地合成可以删除26、27两行代码以解除合成45s长度限制""")
|
| 62 |
+
sid = gr.Dropdown(label="音色", choices=["taffy"], value="taffy")
|
| 63 |
+
vc_input3 = gr.Audio(label="上传音频(长度小于45秒)")
|
| 64 |
+
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
| 65 |
+
vc_submit = gr.Button("转换", variant="primary")
|
| 66 |
+
vc_output1 = gr.Textbox(label="Output Message")
|
| 67 |
+
vc_output2 = gr.Audio(label="Output Audio")
|
| 68 |
+
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform], [vc_output1, vc_output2])
|
| 69 |
+
|
| 70 |
+
app.launch()
|
hubert/hubert-soft-0d54a1f4.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e82e7d079df05fe3aa535f6f7d42d309bdae1d2a53324e2b2386c56721f4f649
|
| 3 |
+
size 378435957
|
hubert/hubert_model.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import random
|
| 3 |
+
from typing import Optional, Tuple
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as t_func
|
| 8 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class Hubert(nn.Module):
|
| 12 |
+
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self._mask = mask
|
| 15 |
+
self.feature_extractor = FeatureExtractor()
|
| 16 |
+
self.feature_projection = FeatureProjection()
|
| 17 |
+
self.positional_embedding = PositionalConvEmbedding()
|
| 18 |
+
self.norm = nn.LayerNorm(768)
|
| 19 |
+
self.dropout = nn.Dropout(0.1)
|
| 20 |
+
self.encoder = TransformerEncoder(
|
| 21 |
+
nn.TransformerEncoderLayer(
|
| 22 |
+
768, 12, 3072, activation="gelu", batch_first=True
|
| 23 |
+
),
|
| 24 |
+
12,
|
| 25 |
+
)
|
| 26 |
+
self.proj = nn.Linear(768, 256)
|
| 27 |
+
|
| 28 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
|
| 29 |
+
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
|
| 30 |
+
|
| 31 |
+
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 32 |
+
mask = None
|
| 33 |
+
if self.training and self._mask:
|
| 34 |
+
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
|
| 35 |
+
x[mask] = self.masked_spec_embed.to(x.dtype)
|
| 36 |
+
return x, mask
|
| 37 |
+
|
| 38 |
+
def encode(
|
| 39 |
+
self, x: torch.Tensor, layer: Optional[int] = None
|
| 40 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 41 |
+
x = self.feature_extractor(x)
|
| 42 |
+
x = self.feature_projection(x.transpose(1, 2))
|
| 43 |
+
x, mask = self.mask(x)
|
| 44 |
+
x = x + self.positional_embedding(x)
|
| 45 |
+
x = self.dropout(self.norm(x))
|
| 46 |
+
x = self.encoder(x, output_layer=layer)
|
| 47 |
+
return x, mask
|
| 48 |
+
|
| 49 |
+
def logits(self, x: torch.Tensor) -> torch.Tensor:
|
| 50 |
+
logits = torch.cosine_similarity(
|
| 51 |
+
x.unsqueeze(2),
|
| 52 |
+
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
|
| 53 |
+
dim=-1,
|
| 54 |
+
)
|
| 55 |
+
return logits / 0.1
|
| 56 |
+
|
| 57 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 58 |
+
x, mask = self.encode(x)
|
| 59 |
+
x = self.proj(x)
|
| 60 |
+
logits = self.logits(x)
|
| 61 |
+
return logits, mask
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class HubertSoft(Hubert):
|
| 65 |
+
def __init__(self):
|
| 66 |
+
super().__init__()
|
| 67 |
+
|
| 68 |
+
@torch.inference_mode()
|
| 69 |
+
def units(self, wav: torch.Tensor) -> torch.Tensor:
|
| 70 |
+
wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
|
| 71 |
+
x, _ = self.encode(wav)
|
| 72 |
+
return self.proj(x)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class FeatureExtractor(nn.Module):
|
| 76 |
+
def __init__(self):
|
| 77 |
+
super().__init__()
|
| 78 |
+
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
|
| 79 |
+
self.norm0 = nn.GroupNorm(512, 512)
|
| 80 |
+
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
| 81 |
+
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
| 82 |
+
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
| 83 |
+
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
| 84 |
+
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
| 85 |
+
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
| 86 |
+
|
| 87 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 88 |
+
x = t_func.gelu(self.norm0(self.conv0(x)))
|
| 89 |
+
x = t_func.gelu(self.conv1(x))
|
| 90 |
+
x = t_func.gelu(self.conv2(x))
|
| 91 |
+
x = t_func.gelu(self.conv3(x))
|
| 92 |
+
x = t_func.gelu(self.conv4(x))
|
| 93 |
+
x = t_func.gelu(self.conv5(x))
|
| 94 |
+
x = t_func.gelu(self.conv6(x))
|
| 95 |
+
return x
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class FeatureProjection(nn.Module):
|
| 99 |
+
def __init__(self):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.norm = nn.LayerNorm(512)
|
| 102 |
+
self.projection = nn.Linear(512, 768)
|
| 103 |
+
self.dropout = nn.Dropout(0.1)
|
| 104 |
+
|
| 105 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 106 |
+
x = self.norm(x)
|
| 107 |
+
x = self.projection(x)
|
| 108 |
+
x = self.dropout(x)
|
| 109 |
+
return x
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class PositionalConvEmbedding(nn.Module):
|
| 113 |
+
def __init__(self):
|
| 114 |
+
super().__init__()
|
| 115 |
+
self.conv = nn.Conv1d(
|
| 116 |
+
768,
|
| 117 |
+
768,
|
| 118 |
+
kernel_size=128,
|
| 119 |
+
padding=128 // 2,
|
| 120 |
+
groups=16,
|
| 121 |
+
)
|
| 122 |
+
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
| 123 |
+
|
| 124 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 125 |
+
x = self.conv(x.transpose(1, 2))
|
| 126 |
+
x = t_func.gelu(x[:, :, :-1])
|
| 127 |
+
return x.transpose(1, 2)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class TransformerEncoder(nn.Module):
|
| 131 |
+
def __init__(
|
| 132 |
+
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
|
| 133 |
+
) -> None:
|
| 134 |
+
super(TransformerEncoder, self).__init__()
|
| 135 |
+
self.layers = nn.ModuleList(
|
| 136 |
+
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
|
| 137 |
+
)
|
| 138 |
+
self.num_layers = num_layers
|
| 139 |
+
|
| 140 |
+
def forward(
|
| 141 |
+
self,
|
| 142 |
+
src: torch.Tensor,
|
| 143 |
+
mask: torch.Tensor = None,
|
| 144 |
+
src_key_padding_mask: torch.Tensor = None,
|
| 145 |
+
output_layer: Optional[int] = None,
|
| 146 |
+
) -> torch.Tensor:
|
| 147 |
+
output = src
|
| 148 |
+
for layer in self.layers[:output_layer]:
|
| 149 |
+
output = layer(
|
| 150 |
+
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
|
| 151 |
+
)
|
| 152 |
+
return output
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def _compute_mask(
|
| 156 |
+
shape: Tuple[int, int],
|
| 157 |
+
mask_prob: float,
|
| 158 |
+
mask_length: int,
|
| 159 |
+
device: torch.device,
|
| 160 |
+
min_masks: int = 0,
|
| 161 |
+
) -> torch.Tensor:
|
| 162 |
+
batch_size, sequence_length = shape
|
| 163 |
+
|
| 164 |
+
if mask_length < 1:
|
| 165 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
| 166 |
+
|
| 167 |
+
if mask_length > sequence_length:
|
| 168 |
+
raise ValueError(
|
| 169 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# compute number of masked spans in batch
|
| 173 |
+
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
|
| 174 |
+
num_masked_spans = max(num_masked_spans, min_masks)
|
| 175 |
+
|
| 176 |
+
# make sure num masked indices <= sequence_length
|
| 177 |
+
if num_masked_spans * mask_length > sequence_length:
|
| 178 |
+
num_masked_spans = sequence_length // mask_length
|
| 179 |
+
|
| 180 |
+
# SpecAugment mask to fill
|
| 181 |
+
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
|
| 182 |
+
|
| 183 |
+
# uniform distribution to sample from, make sure that offset samples are < sequence_length
|
| 184 |
+
uniform_dist = torch.ones(
|
| 185 |
+
(batch_size, sequence_length - (mask_length - 1)), device=device
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# get random indices to mask
|
| 189 |
+
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
|
| 190 |
+
|
| 191 |
+
# expand masked indices to masked spans
|
| 192 |
+
mask_indices = (
|
| 193 |
+
mask_indices.unsqueeze(dim=-1)
|
| 194 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
| 195 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
| 196 |
+
)
|
| 197 |
+
offsets = (
|
| 198 |
+
torch.arange(mask_length, device=device)[None, None, :]
|
| 199 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
| 200 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
| 201 |
+
)
|
| 202 |
+
mask_idxs = mask_indices + offsets
|
| 203 |
+
|
| 204 |
+
# scatter indices to mask
|
| 205 |
+
mask = mask.scatter(1, mask_idxs, True)
|
| 206 |
+
|
| 207 |
+
return mask
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def hubert_soft(
|
| 211 |
+
path: str,
|
| 212 |
+
) -> HubertSoft:
|
| 213 |
+
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
|
| 214 |
+
Args:
|
| 215 |
+
path (str): path of a pretrained model
|
| 216 |
+
"""
|
| 217 |
+
hubert = HubertSoft()
|
| 218 |
+
checkpoint = torch.load(path)
|
| 219 |
+
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
|
| 220 |
+
hubert.load_state_dict(checkpoint)
|
| 221 |
+
hubert.eval()
|
| 222 |
+
return hubert
|
hubert/put_hubert_ckpt_here
ADDED
|
File without changes
|
inference/__init__.py
ADDED
|
File without changes
|
inference/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (130 Bytes). View file
|
|
|
inference/__pycache__/infer_tool.cpython-310.pyc
ADDED
|
Binary file (8.6 kB). View file
|
|
|
inference/chunks_temp.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"info": "temp_dict", "cd65e3ce661250b7aea16ea398d13925": {"chunks": {"0": {"slice": false, "split_time": "0,556685"}}, "time": 1670798600}, "2959d9aae0e4172f27b54e452bf3b77c": {"chunks": {"0": {"slice": false, "split_time": "0,298726"}, "1": {"slice": true, "split_time": "298726,303854"}, "2": {"slice": false, "split_time": "303854,631469"}}, "time": 1670427122}, "c617b9cc74eeed7940d9e6f47c0c5bb6": {"chunks": {"0": {"slice": true, "split_time": "0,294190"}, "1": {"slice": false, "split_time": "294190,2014632"}, "2": {"slice": true, "split_time": "2014632,2021279"}, "3": {"slice": false, "split_time": "2021279,2800739"}, "4": {"slice": true, "split_time": "2800739,2816932"}, "5": {"slice": false, "split_time": "2816932,4554807"}, "6": {"slice": true, "split_time": "4554807,4572392"}, "7": {"slice": false, "split_time": "4572392,5337074"}, "8": {"slice": true, "split_time": "5337074,6197945"}, "9": {"slice": false, "split_time": "6197945,7043120"}, "10": {"slice": true, "split_time": "7043120,7195239"}}, "time": 1670428761}, "e7bba7ef02e7bba00520d7171a529b02": {"chunks": {"0": {"slice": false, "split_time": "0,435739"}}, "time": 1670472899}, "3517fa06b9fe06618393107005ce145f": {"chunks": {"0": {"slice": false, "split_time": "0,245893"}}, "time": 1670475779}, "2250dc696d4c0025d766e5234912e446": {"chunks": {"0": {"slice": true, "split_time": "0,223394"}, "1": {"slice": false, "split_time": "223394,546311"}, "2": {"slice": true, "split_time": "546311,572526"}, "3": {"slice": false, "split_time": "572526,1004349"}, "4": {"slice": true, "split_time": "1004349,1090615"}, "5": {"slice": false, "split_time": "1090615,1415280"}, "6": {"slice": true, "split_time": "1415280,1418069"}, "7": {"slice": false, "split_time": "1418069,1659131"}, "8": {"slice": true, "split_time": "1659131,1661453"}, "9": {"slice": false, "split_time": "1661453,1888827"}, "10": {"slice": true, "split_time": "1888827,1960051"}, "11": {"slice": false, "split_time": "1960051,2230836"}, "12": {"slice": true, "split_time": "2230836,2306854"}, "13": {"slice": false, "split_time": "2306854,2583422"}, "14": {"slice": true, "split_time": "2583422,2649271"}, "15": {"slice": false, "split_time": "2649271,2929916"}, "16": {"slice": true, "split_time": "2929916,2977116"}, "17": {"slice": false, "split_time": "2977116,3431901"}, "18": {"slice": true, "split_time": "3431901,3504853"}}, "time": 1670476034}, "7030c457119b4710d0091ce67f58a125": {"chunks": {"0": {"slice": true, "split_time": "0,9640"}, "1": {"slice": false, "split_time": "9640,209081"}, "2": {"slice": true, "split_time": "209081,210126"}, "3": {"slice": false, "split_time": "210126,504084"}, "4": {"slice": true, "split_time": "504084,505625"}, "5": {"slice": false, "split_time": "505625,768061"}, "6": {"slice": true, "split_time": "768061,795550"}}, "time": 1670627906}, "7d9274b960035df4dacfdc95b492cf7c": {"chunks": {"0": {"slice": false, "split_time": "0,337196"}, "1": {"slice": true, "split_time": "337196,347378"}, "2": {"slice": false, "split_time": "347378,1022501"}, "3": {"slice": true, "split_time": "1022501,1034918"}, "4": {"slice": false, "split_time": "1034918,2070080"}}, "time": 1670487808}, "0f3c73ebbda2101325eb6453551514af": {"chunks": {"0": {"slice": true, "split_time": "0,475043"}, "1": {"slice": false, "split_time": "475043,1288182"}, "2": {"slice": true, "split_time": "1288182,1303033"}, "3": {"slice": false, "split_time": "1303033,2101474"}, "4": {"slice": true, "split_time": "2101474,2106811"}, "5": {"slice": false, "split_time": "2106811,3055223"}, "6": {"slice": true, "split_time": "3055223,3516745"}, "7": {"slice": false, "split_time": "3516745,4348812"}, "8": {"slice": true, "split_time": "4348812,4354034"}, "9": {"slice": false, "split_time": "4354034,4756434"}, "10": {"slice": true, "split_time": "4756434,4757558"}, "11": {"slice": false, "split_time": "4757558,7830503"}, "12": {"slice": true, "split_time": "7830503,7839320"}, "13": {"slice": false, "split_time": "7839320,8051918"}, "14": {"slice": true, "split_time": "8051918,8184993"}}, "time": 1670713815}, "c544d7842bb2fa325a0aa9a21b7f9503": {"chunks": {"0": {"slice": true, "split_time": "0,134375"}, "1": {"slice": false, "split_time": "134375,947514"}, "2": {"slice": true, "split_time": "947514,962365"}, "3": {"slice": false, "split_time": "962365,1760806"}, "4": {"slice": true, "split_time": "1760806,1766143"}, "5": {"slice": false, "split_time": "1766143,2714555"}, "6": {"slice": true, "split_time": "2714555,2888274"}}, "time": 1670586817}, "b663f58fd3b1da710febfa0a45f447f7": {"chunks": {"0": {"slice": false, "split_time": "0,333120"}}, "time": 1670628277}, "dccf823870a0c278d53690469e26ce5e": {"chunks": {"0": {"slice": false, "split_time": "0,174322"}, "1": {"slice": true, "split_time": "174322,178984"}, "2": {"slice": false, "split_time": "178984,592293"}}, "time": 1670750467}, "1ea41e9dc88c7c28ac2ac7fc637f929f": {"chunks": {"0": {"slice": false, "split_time": "0,177025"}, "1": {"slice": true, "split_time": "177025,180753"}, "2": {"slice": false, "split_time": "180753,307984"}, "3": {"slice": true, "split_time": "307984,309679"}, "4": {"slice": false, "split_time": "309679,602116"}, "5": {"slice": true, "split_time": "602116,604118"}, "6": {"slice": false, "split_time": "604118,608816"}}, "time": 1670750647}, "70bfe94e1cfe1b9eb8e575d15a7e8bb2": {"chunks": {"0": {"slice": false, "split_time": "0,240584"}}, "time": 1670751256}, "a4296c8efc33bd7857cb3b2f6f9b912b": {"chunks": {"0": {"slice": false, "split_time": "0,314870"}}, "time": 1670751262}, "4f0e18a681b221edfb66f601cb0257dc": {"chunks": {"0": {"slice": true, "split_time": "0,13985"}, "1": {"slice": false, "split_time": "13985,114094"}, "2": {"slice": true, "split_time": "114094,117459"}, "3": {"slice": false, "split_time": "117459,326432"}, "4": {"slice": true, "split_time": "326432,328157"}, "5": {"slice": false, "split_time": "328157,462942"}, "6": {"slice": true, "split_time": "462942,480279"}, "7": {"slice": false, "split_time": "480279,615909"}, "8": {"slice": true, "split_time": "615909,620472"}}, "time": 1670751397}}
|
inference/infer_tool.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
import json
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
import librosa
|
| 9 |
+
import maad
|
| 10 |
+
import numpy as np
|
| 11 |
+
# import onnxruntime
|
| 12 |
+
import parselmouth
|
| 13 |
+
import soundfile
|
| 14 |
+
import torch
|
| 15 |
+
import torchaudio
|
| 16 |
+
|
| 17 |
+
from hubert import hubert_model
|
| 18 |
+
import utils
|
| 19 |
+
from models import SynthesizerTrn
|
| 20 |
+
|
| 21 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def read_temp(file_name):
|
| 25 |
+
if not os.path.exists(file_name):
|
| 26 |
+
with open(file_name, "w") as f:
|
| 27 |
+
f.write(json.dumps({"info": "temp_dict"}))
|
| 28 |
+
return {}
|
| 29 |
+
else:
|
| 30 |
+
try:
|
| 31 |
+
with open(file_name, "r") as f:
|
| 32 |
+
data = f.read()
|
| 33 |
+
data_dict = json.loads(data)
|
| 34 |
+
if os.path.getsize(file_name) > 50 * 1024 * 1024:
|
| 35 |
+
f_name = file_name.split("/")[-1]
|
| 36 |
+
print(f"clean {f_name}")
|
| 37 |
+
for wav_hash in list(data_dict.keys()):
|
| 38 |
+
if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
|
| 39 |
+
del data_dict[wav_hash]
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(e)
|
| 42 |
+
print(f"{file_name} error,auto rebuild file")
|
| 43 |
+
data_dict = {"info": "temp_dict"}
|
| 44 |
+
return data_dict
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def write_temp(file_name, data):
|
| 48 |
+
with open(file_name, "w") as f:
|
| 49 |
+
f.write(json.dumps(data))
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def timeit(func):
|
| 53 |
+
def run(*args, **kwargs):
|
| 54 |
+
t = time.time()
|
| 55 |
+
res = func(*args, **kwargs)
|
| 56 |
+
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
|
| 57 |
+
return res
|
| 58 |
+
|
| 59 |
+
return run
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def format_wav(audio_path):
|
| 63 |
+
if Path(audio_path).suffix == '.wav':
|
| 64 |
+
return
|
| 65 |
+
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
|
| 66 |
+
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def get_end_file(dir_path, end):
|
| 70 |
+
file_lists = []
|
| 71 |
+
for root, dirs, files in os.walk(dir_path):
|
| 72 |
+
files = [f for f in files if f[0] != '.']
|
| 73 |
+
dirs[:] = [d for d in dirs if d[0] != '.']
|
| 74 |
+
for f_file in files:
|
| 75 |
+
if f_file.endswith(end):
|
| 76 |
+
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
|
| 77 |
+
return file_lists
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def get_md5(content):
|
| 81 |
+
return hashlib.new("md5", content).hexdigest()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def resize2d_f0(x, target_len):
|
| 85 |
+
source = np.array(x)
|
| 86 |
+
source[source < 0.001] = np.nan
|
| 87 |
+
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
|
| 88 |
+
source)
|
| 89 |
+
res = np.nan_to_num(target)
|
| 90 |
+
return res
|
| 91 |
+
|
| 92 |
+
def get_f0(x, p_len,f0_up_key=0):
|
| 93 |
+
|
| 94 |
+
time_step = 160 / 16000 * 1000
|
| 95 |
+
f0_min = 50
|
| 96 |
+
f0_max = 1100
|
| 97 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 98 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 99 |
+
|
| 100 |
+
f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
|
| 101 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
| 102 |
+
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
| 103 |
+
|
| 104 |
+
pad_size=(p_len - len(f0) + 1) // 2
|
| 105 |
+
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
| 106 |
+
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
| 107 |
+
|
| 108 |
+
f0 *= pow(2, f0_up_key / 12)
|
| 109 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 110 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
| 111 |
+
f0_mel[f0_mel <= 1] = 1
|
| 112 |
+
f0_mel[f0_mel > 255] = 255
|
| 113 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
| 114 |
+
return f0_coarse, f0
|
| 115 |
+
|
| 116 |
+
def clean_pitch(input_pitch):
|
| 117 |
+
num_nan = np.sum(input_pitch == 1)
|
| 118 |
+
if num_nan / len(input_pitch) > 0.9:
|
| 119 |
+
input_pitch[input_pitch != 1] = 1
|
| 120 |
+
return input_pitch
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def plt_pitch(input_pitch):
|
| 124 |
+
input_pitch = input_pitch.astype(float)
|
| 125 |
+
input_pitch[input_pitch == 1] = np.nan
|
| 126 |
+
return input_pitch
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def f0_to_pitch(ff):
|
| 130 |
+
f0_pitch = 69 + 12 * np.log2(ff / 440)
|
| 131 |
+
return f0_pitch
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def fill_a_to_b(a, b):
|
| 135 |
+
if len(a) < len(b):
|
| 136 |
+
for _ in range(0, len(b) - len(a)):
|
| 137 |
+
a.append(a[0])
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def mkdir(paths: list):
|
| 141 |
+
for path in paths:
|
| 142 |
+
if not os.path.exists(path):
|
| 143 |
+
os.mkdir(path)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class Svc(object):
|
| 147 |
+
def __init__(self, net_g_path, config_path, hubert_path="hubert/hubert-soft-0d54a1f4.pt",
|
| 148 |
+
onnx=False):
|
| 149 |
+
self.onnx = onnx
|
| 150 |
+
self.net_g_path = net_g_path
|
| 151 |
+
self.hubert_path = hubert_path
|
| 152 |
+
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 153 |
+
self.net_g_ms = None
|
| 154 |
+
self.hps_ms = utils.get_hparams_from_file(config_path)
|
| 155 |
+
self.target_sample = self.hps_ms.data.sampling_rate
|
| 156 |
+
self.hop_size = self.hps_ms.data.hop_length
|
| 157 |
+
self.speakers = {}
|
| 158 |
+
for spk, sid in self.hps_ms.spk.items():
|
| 159 |
+
self.speakers[sid] = spk
|
| 160 |
+
self.spk2id = self.hps_ms.spk
|
| 161 |
+
# 加载hubert
|
| 162 |
+
self.hubert_soft = hubert_model.hubert_soft(hubert_path)
|
| 163 |
+
if torch.cuda.is_available():
|
| 164 |
+
self.hubert_soft = self.hubert_soft.cuda()
|
| 165 |
+
self.load_model()
|
| 166 |
+
|
| 167 |
+
def load_model(self):
|
| 168 |
+
# 获取模型配置
|
| 169 |
+
if self.onnx:
|
| 170 |
+
raise NotImplementedError
|
| 171 |
+
# self.net_g_ms = SynthesizerTrnForONNX(
|
| 172 |
+
# 178,
|
| 173 |
+
# self.hps_ms.data.filter_length // 2 + 1,
|
| 174 |
+
# self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
|
| 175 |
+
# n_speakers=self.hps_ms.data.n_speakers,
|
| 176 |
+
# **self.hps_ms.model)
|
| 177 |
+
# _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
|
| 178 |
+
else:
|
| 179 |
+
self.net_g_ms = SynthesizerTrn(
|
| 180 |
+
self.hps_ms.data.filter_length // 2 + 1,
|
| 181 |
+
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
|
| 182 |
+
**self.hps_ms.model)
|
| 183 |
+
_ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
|
| 184 |
+
if "half" in self.net_g_path and torch.cuda.is_available():
|
| 185 |
+
_ = self.net_g_ms.half().eval().to(self.dev)
|
| 186 |
+
else:
|
| 187 |
+
_ = self.net_g_ms.eval().to(self.dev)
|
| 188 |
+
|
| 189 |
+
def get_units(self, source, sr):
|
| 190 |
+
|
| 191 |
+
source = source.unsqueeze(0).to(self.dev)
|
| 192 |
+
with torch.inference_mode():
|
| 193 |
+
start = time.time()
|
| 194 |
+
units = self.hubert_soft.units(source)
|
| 195 |
+
use_time = time.time() - start
|
| 196 |
+
print("hubert use time:{}".format(use_time))
|
| 197 |
+
return units
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def get_unit_pitch(self, in_path, tran):
|
| 201 |
+
source, sr = torchaudio.load(in_path)
|
| 202 |
+
source = torchaudio.functional.resample(source, sr, 16000)
|
| 203 |
+
if len(source.shape) == 2 and source.shape[1] >= 2:
|
| 204 |
+
source = torch.mean(source, dim=0).unsqueeze(0)
|
| 205 |
+
soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
|
| 206 |
+
f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
|
| 207 |
+
return soft, f0
|
| 208 |
+
|
| 209 |
+
def infer(self, speaker_id, tran, raw_path):
|
| 210 |
+
if type(speaker_id) == str:
|
| 211 |
+
speaker_id = self.spk2id[speaker_id]
|
| 212 |
+
sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
|
| 213 |
+
soft, pitch = self.get_unit_pitch(raw_path, tran)
|
| 214 |
+
f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.dev)
|
| 215 |
+
if "half" in self.net_g_path and torch.cuda.is_available():
|
| 216 |
+
stn_tst = torch.HalfTensor(soft)
|
| 217 |
+
else:
|
| 218 |
+
stn_tst = torch.FloatTensor(soft)
|
| 219 |
+
with torch.no_grad():
|
| 220 |
+
x_tst = stn_tst.unsqueeze(0).to(self.dev)
|
| 221 |
+
start = time.time()
|
| 222 |
+
x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
|
| 223 |
+
audio = self.net_g_ms.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
|
| 224 |
+
use_time = time.time() - start
|
| 225 |
+
print("vits use time:{}".format(use_time))
|
| 226 |
+
return audio, audio.shape[-1]
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
# class SvcONNXInferModel(object):
|
| 230 |
+
# def __init__(self, hubert_onnx, vits_onnx, config_path):
|
| 231 |
+
# self.config_path = config_path
|
| 232 |
+
# self.vits_onnx = vits_onnx
|
| 233 |
+
# self.hubert_onnx = hubert_onnx
|
| 234 |
+
# self.hubert_onnx_session = onnxruntime.InferenceSession(hubert_onnx, providers=['CUDAExecutionProvider', ])
|
| 235 |
+
# self.inspect_onnx(self.hubert_onnx_session)
|
| 236 |
+
# self.vits_onnx_session = onnxruntime.InferenceSession(vits_onnx, providers=['CUDAExecutionProvider', ])
|
| 237 |
+
# self.inspect_onnx(self.vits_onnx_session)
|
| 238 |
+
# self.hps_ms = utils.get_hparams_from_file(self.config_path)
|
| 239 |
+
# self.target_sample = self.hps_ms.data.sampling_rate
|
| 240 |
+
# self.feature_input = FeatureInput(self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length)
|
| 241 |
+
#
|
| 242 |
+
# @staticmethod
|
| 243 |
+
# def inspect_onnx(session):
|
| 244 |
+
# for i in session.get_inputs():
|
| 245 |
+
# print("name:{}\tshape:{}\tdtype:{}".format(i.name, i.shape, i.type))
|
| 246 |
+
# for i in session.get_outputs():
|
| 247 |
+
# print("name:{}\tshape:{}\tdtype:{}".format(i.name, i.shape, i.type))
|
| 248 |
+
#
|
| 249 |
+
# def infer(self, speaker_id, tran, raw_path):
|
| 250 |
+
# sid = np.array([int(speaker_id)], dtype=np.int64)
|
| 251 |
+
# soft, pitch = self.get_unit_pitch(raw_path, tran)
|
| 252 |
+
# pitch = np.expand_dims(pitch, axis=0).astype(np.int64)
|
| 253 |
+
# stn_tst = soft
|
| 254 |
+
# x_tst = np.expand_dims(stn_tst, axis=0)
|
| 255 |
+
# x_tst_lengths = np.array([stn_tst.shape[0]], dtype=np.int64)
|
| 256 |
+
# # 使用ONNX Runtime进行推理
|
| 257 |
+
# start = time.time()
|
| 258 |
+
# audio = self.vits_onnx_session.run(output_names=["audio"],
|
| 259 |
+
# input_feed={
|
| 260 |
+
# "hidden_unit": x_tst,
|
| 261 |
+
# "lengths": x_tst_lengths,
|
| 262 |
+
# "pitch": pitch,
|
| 263 |
+
# "sid": sid,
|
| 264 |
+
# })[0][0, 0]
|
| 265 |
+
# use_time = time.time() - start
|
| 266 |
+
# print("vits_onnx_session.run time:{}".format(use_time))
|
| 267 |
+
# audio = torch.from_numpy(audio)
|
| 268 |
+
# return audio, audio.shape[-1]
|
| 269 |
+
#
|
| 270 |
+
# def get_units(self, source, sr):
|
| 271 |
+
# source = torchaudio.functional.resample(source, sr, 16000)
|
| 272 |
+
# if len(source.shape) == 2 and source.shape[1] >= 2:
|
| 273 |
+
# source = torch.mean(source, dim=0).unsqueeze(0)
|
| 274 |
+
# source = source.unsqueeze(0)
|
| 275 |
+
# # 使用ONNX Runtime进行推理
|
| 276 |
+
# start = time.time()
|
| 277 |
+
# units = self.hubert_onnx_session.run(output_names=["embed"],
|
| 278 |
+
# input_feed={"source": source.numpy()})[0]
|
| 279 |
+
# use_time = time.time() - start
|
| 280 |
+
# print("hubert_onnx_session.run time:{}".format(use_time))
|
| 281 |
+
# return units
|
| 282 |
+
#
|
| 283 |
+
# def transcribe(self, source, sr, length, transform):
|
| 284 |
+
# feature_pit = self.feature_input.compute_f0(source, sr)
|
| 285 |
+
# feature_pit = feature_pit * 2 ** (transform / 12)
|
| 286 |
+
# feature_pit = resize2d_f0(feature_pit, length)
|
| 287 |
+
# coarse_pit = self.feature_input.coarse_f0(feature_pit)
|
| 288 |
+
# return coarse_pit
|
| 289 |
+
#
|
| 290 |
+
# def get_unit_pitch(self, in_path, tran):
|
| 291 |
+
# source, sr = torchaudio.load(in_path)
|
| 292 |
+
# soft = self.get_units(source, sr).squeeze(0)
|
| 293 |
+
# input_pitch = self.transcribe(source.numpy()[0], sr, soft.shape[0], tran)
|
| 294 |
+
# return soft, input_pitch
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
class RealTimeVC:
|
| 298 |
+
def __init__(self):
|
| 299 |
+
self.last_chunk = None
|
| 300 |
+
self.last_o = None
|
| 301 |
+
self.chunk_len = 16000 # 区块长度
|
| 302 |
+
self.pre_len = 3840 # 交叉淡化长度,640的倍数
|
| 303 |
+
|
| 304 |
+
"""输入输出都是1维numpy 音频波形数组"""
|
| 305 |
+
|
| 306 |
+
def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path):
|
| 307 |
+
audio, sr = torchaudio.load(input_wav_path)
|
| 308 |
+
audio = audio.cpu().numpy()[0]
|
| 309 |
+
temp_wav = io.BytesIO()
|
| 310 |
+
if self.last_chunk is None:
|
| 311 |
+
input_wav_path.seek(0)
|
| 312 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
|
| 313 |
+
audio = audio.cpu().numpy()
|
| 314 |
+
self.last_chunk = audio[-self.pre_len:]
|
| 315 |
+
self.last_o = audio
|
| 316 |
+
return audio[-self.chunk_len:]
|
| 317 |
+
else:
|
| 318 |
+
audio = np.concatenate([self.last_chunk, audio])
|
| 319 |
+
soundfile.write(temp_wav, audio, sr, format="wav")
|
| 320 |
+
temp_wav.seek(0)
|
| 321 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav)
|
| 322 |
+
audio = audio.cpu().numpy()
|
| 323 |
+
ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
|
| 324 |
+
self.last_chunk = audio[-self.pre_len:]
|
| 325 |
+
self.last_o = audio
|
| 326 |
+
return ret[self.chunk_len:2 * self.chunk_len]
|
inference/slicer.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torchaudio
|
| 6 |
+
from scipy.ndimage import maximum_filter1d, uniform_filter1d
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def timeit(func):
|
| 10 |
+
def run(*args, **kwargs):
|
| 11 |
+
t = time.time()
|
| 12 |
+
res = func(*args, **kwargs)
|
| 13 |
+
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
|
| 14 |
+
return res
|
| 15 |
+
|
| 16 |
+
return run
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# @timeit
|
| 20 |
+
def _window_maximum(arr, win_sz):
|
| 21 |
+
return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# @timeit
|
| 25 |
+
def _window_rms(arr, win_sz):
|
| 26 |
+
filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2))
|
| 27 |
+
return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def level2db(levels, eps=1e-12):
|
| 31 |
+
return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1))
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def _apply_slice(audio, begin, end):
|
| 35 |
+
if len(audio.shape) > 1:
|
| 36 |
+
return audio[:, begin: end]
|
| 37 |
+
else:
|
| 38 |
+
return audio[begin: end]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class Slicer:
|
| 42 |
+
def __init__(self,
|
| 43 |
+
sr: int,
|
| 44 |
+
db_threshold: float = -40,
|
| 45 |
+
min_length: int = 5000,
|
| 46 |
+
win_l: int = 300,
|
| 47 |
+
win_s: int = 20,
|
| 48 |
+
max_silence_kept: int = 500):
|
| 49 |
+
self.db_threshold = db_threshold
|
| 50 |
+
self.min_samples = round(sr * min_length / 1000)
|
| 51 |
+
self.win_ln = round(sr * win_l / 1000)
|
| 52 |
+
self.win_sn = round(sr * win_s / 1000)
|
| 53 |
+
self.max_silence = round(sr * max_silence_kept / 1000)
|
| 54 |
+
if not self.min_samples >= self.win_ln >= self.win_sn:
|
| 55 |
+
raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s')
|
| 56 |
+
if not self.max_silence >= self.win_sn:
|
| 57 |
+
raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s')
|
| 58 |
+
|
| 59 |
+
@timeit
|
| 60 |
+
def slice(self, audio):
|
| 61 |
+
samples = audio
|
| 62 |
+
if samples.shape[0] <= self.min_samples:
|
| 63 |
+
return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}}
|
| 64 |
+
# get absolute amplitudes
|
| 65 |
+
abs_amp = np.abs(samples - np.mean(samples))
|
| 66 |
+
# calculate local maximum with large window
|
| 67 |
+
win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln))
|
| 68 |
+
sil_tags = []
|
| 69 |
+
left = right = 0
|
| 70 |
+
while right < win_max_db.shape[0]:
|
| 71 |
+
if win_max_db[right] < self.db_threshold:
|
| 72 |
+
right += 1
|
| 73 |
+
elif left == right:
|
| 74 |
+
left += 1
|
| 75 |
+
right += 1
|
| 76 |
+
else:
|
| 77 |
+
if left == 0:
|
| 78 |
+
split_loc_l = left
|
| 79 |
+
else:
|
| 80 |
+
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
|
| 81 |
+
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
|
| 82 |
+
split_win_l = left + np.argmin(rms_db_left)
|
| 83 |
+
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
|
| 84 |
+
if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[
|
| 85 |
+
0] - 1:
|
| 86 |
+
right += 1
|
| 87 |
+
left = right
|
| 88 |
+
continue
|
| 89 |
+
if right == win_max_db.shape[0] - 1:
|
| 90 |
+
split_loc_r = right + self.win_ln
|
| 91 |
+
else:
|
| 92 |
+
sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2)
|
| 93 |
+
rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln],
|
| 94 |
+
win_sz=self.win_sn))
|
| 95 |
+
split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right)
|
| 96 |
+
split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn])
|
| 97 |
+
sil_tags.append((split_loc_l, split_loc_r))
|
| 98 |
+
right += 1
|
| 99 |
+
left = right
|
| 100 |
+
if left != right:
|
| 101 |
+
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
|
| 102 |
+
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
|
| 103 |
+
split_win_l = left + np.argmin(rms_db_left)
|
| 104 |
+
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
|
| 105 |
+
sil_tags.append((split_loc_l, samples.shape[0]))
|
| 106 |
+
if len(sil_tags) == 0:
|
| 107 |
+
return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}}
|
| 108 |
+
else:
|
| 109 |
+
chunks = []
|
| 110 |
+
# 第一段静音并非从头开始,补上有声片段
|
| 111 |
+
if sil_tags[0][0]:
|
| 112 |
+
chunks.append({"slice": False, "split_time": f"0,{sil_tags[0][0]}"})
|
| 113 |
+
for i in range(0, len(sil_tags)):
|
| 114 |
+
# 标识有声片段(跳过第一段)
|
| 115 |
+
if i:
|
| 116 |
+
chunks.append({"slice": False, "split_time": f"{sil_tags[i - 1][1]},{sil_tags[i][0]}"})
|
| 117 |
+
# 标识所有静音片段
|
| 118 |
+
chunks.append({"slice": True, "split_time": f"{sil_tags[i][0]},{sil_tags[i][1]}"})
|
| 119 |
+
# 最后一段静音并非结尾,补上结尾片段
|
| 120 |
+
if sil_tags[-1][1] != len(audio):
|
| 121 |
+
chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1]},{len(audio)}"})
|
| 122 |
+
chunk_dict = {}
|
| 123 |
+
for i in range(len(chunks)):
|
| 124 |
+
chunk_dict[str(i)] = chunks[i]
|
| 125 |
+
return chunk_dict
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def cut(audio_path, db_thresh=-30, min_len=5000, win_l=300, win_s=20, max_sil_kept=500):
|
| 129 |
+
audio, sr = torchaudio.load(audio_path)
|
| 130 |
+
if len(audio.shape) == 2 and audio.shape[1] >= 2:
|
| 131 |
+
audio = torch.mean(audio, dim=0).unsqueeze(0)
|
| 132 |
+
audio = audio.cpu().numpy()[0]
|
| 133 |
+
|
| 134 |
+
slicer = Slicer(
|
| 135 |
+
sr=sr,
|
| 136 |
+
db_threshold=db_thresh,
|
| 137 |
+
min_length=min_len,
|
| 138 |
+
win_l=win_l,
|
| 139 |
+
win_s=win_s,
|
| 140 |
+
max_silence_kept=max_sil_kept
|
| 141 |
+
)
|
| 142 |
+
chunks = slicer.slice(audio)
|
| 143 |
+
return chunks
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def chunks2audio(audio_path, chunks):
|
| 147 |
+
chunks = dict(chunks)
|
| 148 |
+
audio, sr = torchaudio.load(audio_path)
|
| 149 |
+
if len(audio.shape) == 2 and audio.shape[1] >= 2:
|
| 150 |
+
audio = torch.mean(audio, dim=0).unsqueeze(0)
|
| 151 |
+
audio = audio.cpu().numpy()[0]
|
| 152 |
+
result = []
|
| 153 |
+
for k, v in chunks.items():
|
| 154 |
+
tag = v["split_time"].split(",")
|
| 155 |
+
result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
|
| 156 |
+
return result, sr
|
| 157 |
+
|
| 158 |
+
|