Spaces:
Running
Running
Upload 30 files
Browse files- LICENSE +21 -0
- add_speaker.py +62 -0
- attentions.py +303 -0
- commons.py +188 -0
- data_utils.py +152 -0
- flask_api.py +56 -0
- inference_main.py +65 -0
- logs/32k/G_98000.pth +3 -0
- logs/32k/model in here.txt +0 -0
- losses.py +61 -0
- mel_processing.py +112 -0
- models.py +351 -0
- modules.py +342 -0
- preprocess_flist_config.py +117 -0
- preprocess_hubert_f0.py +106 -0
- requirements.txt +16 -0
- resample.py +47 -0
- spec_gen.py +22 -0
- terms.md +57 -0
- train.py +281 -0
- utils.py +338 -0
- vdecoder/__init__.py +0 -0
- vdecoder/__pycache__/__init__.cpython-310.pyc +0 -0
- vdecoder/hifigan/__pycache__/env.cpython-310.pyc +0 -0
- vdecoder/hifigan/__pycache__/models.cpython-310.pyc +0 -0
- vdecoder/hifigan/__pycache__/utils.cpython-310.pyc +0 -0
- vdecoder/hifigan/env.py +15 -0
- vdecoder/hifigan/models.py +500 -0
- vdecoder/hifigan/nvSTFT.py +111 -0
- vdecoder/hifigan/utils.py +68 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Jingyi Li
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
add_speaker.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from tqdm import tqdm
|
4 |
+
from random import shuffle
|
5 |
+
import json
|
6 |
+
|
7 |
+
|
8 |
+
if __name__ == "__main__":
|
9 |
+
parser = argparse.ArgumentParser()
|
10 |
+
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
|
11 |
+
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
|
12 |
+
parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
|
13 |
+
parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir")
|
14 |
+
args = parser.parse_args()
|
15 |
+
|
16 |
+
previous_config = json.load(open("configs/config.json", "rb"))
|
17 |
+
|
18 |
+
train = []
|
19 |
+
val = []
|
20 |
+
test = []
|
21 |
+
idx = 0
|
22 |
+
spk_dict = previous_config["spk"]
|
23 |
+
spk_id = max([i for i in spk_dict.values()]) + 1
|
24 |
+
for speaker in tqdm(os.listdir(args.source_dir)):
|
25 |
+
if speaker not in spk_dict.keys():
|
26 |
+
spk_dict[speaker] = spk_id
|
27 |
+
spk_id += 1
|
28 |
+
wavs = [os.path.join(args.source_dir, speaker, i)for i in os.listdir(os.path.join(args.source_dir, speaker))]
|
29 |
+
wavs = [i for i in wavs if i.endswith("wav")]
|
30 |
+
shuffle(wavs)
|
31 |
+
train += wavs[2:-10]
|
32 |
+
val += wavs[:2]
|
33 |
+
test += wavs[-10:]
|
34 |
+
|
35 |
+
assert previous_config["model"]["n_speakers"] > len(spk_dict.keys())
|
36 |
+
shuffle(train)
|
37 |
+
shuffle(val)
|
38 |
+
shuffle(test)
|
39 |
+
|
40 |
+
print("Writing", args.train_list)
|
41 |
+
with open(args.train_list, "w") as f:
|
42 |
+
for fname in tqdm(train):
|
43 |
+
wavpath = fname
|
44 |
+
f.write(wavpath + "\n")
|
45 |
+
|
46 |
+
print("Writing", args.val_list)
|
47 |
+
with open(args.val_list, "w") as f:
|
48 |
+
for fname in tqdm(val):
|
49 |
+
wavpath = fname
|
50 |
+
f.write(wavpath + "\n")
|
51 |
+
|
52 |
+
print("Writing", args.test_list)
|
53 |
+
with open(args.test_list, "w") as f:
|
54 |
+
for fname in tqdm(test):
|
55 |
+
wavpath = fname
|
56 |
+
f.write(wavpath + "\n")
|
57 |
+
|
58 |
+
previous_config["spk"] = spk_dict
|
59 |
+
|
60 |
+
print("Writing configs/config.json")
|
61 |
+
with open("configs/config.json", "w") as f:
|
62 |
+
json.dump(previous_config, f, indent=2)
|
attentions.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
import commons
|
9 |
+
import modules
|
10 |
+
from modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
15 |
+
super().__init__()
|
16 |
+
self.hidden_channels = hidden_channels
|
17 |
+
self.filter_channels = filter_channels
|
18 |
+
self.n_heads = n_heads
|
19 |
+
self.n_layers = n_layers
|
20 |
+
self.kernel_size = kernel_size
|
21 |
+
self.p_dropout = p_dropout
|
22 |
+
self.window_size = window_size
|
23 |
+
|
24 |
+
self.drop = nn.Dropout(p_dropout)
|
25 |
+
self.attn_layers = nn.ModuleList()
|
26 |
+
self.norm_layers_1 = nn.ModuleList()
|
27 |
+
self.ffn_layers = nn.ModuleList()
|
28 |
+
self.norm_layers_2 = nn.ModuleList()
|
29 |
+
for i in range(self.n_layers):
|
30 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
31 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
32 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
33 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
34 |
+
|
35 |
+
def forward(self, x, x_mask):
|
36 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
37 |
+
x = x * x_mask
|
38 |
+
for i in range(self.n_layers):
|
39 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
40 |
+
y = self.drop(y)
|
41 |
+
x = self.norm_layers_1[i](x + y)
|
42 |
+
|
43 |
+
y = self.ffn_layers[i](x, x_mask)
|
44 |
+
y = self.drop(y)
|
45 |
+
x = self.norm_layers_2[i](x + y)
|
46 |
+
x = x * x_mask
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class Decoder(nn.Module):
|
51 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
52 |
+
super().__init__()
|
53 |
+
self.hidden_channels = hidden_channels
|
54 |
+
self.filter_channels = filter_channels
|
55 |
+
self.n_heads = n_heads
|
56 |
+
self.n_layers = n_layers
|
57 |
+
self.kernel_size = kernel_size
|
58 |
+
self.p_dropout = p_dropout
|
59 |
+
self.proximal_bias = proximal_bias
|
60 |
+
self.proximal_init = proximal_init
|
61 |
+
|
62 |
+
self.drop = nn.Dropout(p_dropout)
|
63 |
+
self.self_attn_layers = nn.ModuleList()
|
64 |
+
self.norm_layers_0 = nn.ModuleList()
|
65 |
+
self.encdec_attn_layers = nn.ModuleList()
|
66 |
+
self.norm_layers_1 = nn.ModuleList()
|
67 |
+
self.ffn_layers = nn.ModuleList()
|
68 |
+
self.norm_layers_2 = nn.ModuleList()
|
69 |
+
for i in range(self.n_layers):
|
70 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
71 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
72 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
73 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
74 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
75 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
76 |
+
|
77 |
+
def forward(self, x, x_mask, h, h_mask):
|
78 |
+
"""
|
79 |
+
x: decoder input
|
80 |
+
h: encoder output
|
81 |
+
"""
|
82 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
83 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
84 |
+
x = x * x_mask
|
85 |
+
for i in range(self.n_layers):
|
86 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
87 |
+
y = self.drop(y)
|
88 |
+
x = self.norm_layers_0[i](x + y)
|
89 |
+
|
90 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
91 |
+
y = self.drop(y)
|
92 |
+
x = self.norm_layers_1[i](x + y)
|
93 |
+
|
94 |
+
y = self.ffn_layers[i](x, x_mask)
|
95 |
+
y = self.drop(y)
|
96 |
+
x = self.norm_layers_2[i](x + y)
|
97 |
+
x = x * x_mask
|
98 |
+
return x
|
99 |
+
|
100 |
+
|
101 |
+
class MultiHeadAttention(nn.Module):
|
102 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
103 |
+
super().__init__()
|
104 |
+
assert channels % n_heads == 0
|
105 |
+
|
106 |
+
self.channels = channels
|
107 |
+
self.out_channels = out_channels
|
108 |
+
self.n_heads = n_heads
|
109 |
+
self.p_dropout = p_dropout
|
110 |
+
self.window_size = window_size
|
111 |
+
self.heads_share = heads_share
|
112 |
+
self.block_length = block_length
|
113 |
+
self.proximal_bias = proximal_bias
|
114 |
+
self.proximal_init = proximal_init
|
115 |
+
self.attn = None
|
116 |
+
|
117 |
+
self.k_channels = channels // n_heads
|
118 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
119 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
120 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
121 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
122 |
+
self.drop = nn.Dropout(p_dropout)
|
123 |
+
|
124 |
+
if window_size is not None:
|
125 |
+
n_heads_rel = 1 if heads_share else n_heads
|
126 |
+
rel_stddev = self.k_channels**-0.5
|
127 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
128 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
129 |
+
|
130 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
131 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
132 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
133 |
+
if proximal_init:
|
134 |
+
with torch.no_grad():
|
135 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
136 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
137 |
+
|
138 |
+
def forward(self, x, c, attn_mask=None):
|
139 |
+
q = self.conv_q(x)
|
140 |
+
k = self.conv_k(c)
|
141 |
+
v = self.conv_v(c)
|
142 |
+
|
143 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
144 |
+
|
145 |
+
x = self.conv_o(x)
|
146 |
+
return x
|
147 |
+
|
148 |
+
def attention(self, query, key, value, mask=None):
|
149 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
150 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
151 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
152 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
153 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
154 |
+
|
155 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
156 |
+
if self.window_size is not None:
|
157 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
158 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
159 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
160 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
161 |
+
scores = scores + scores_local
|
162 |
+
if self.proximal_bias:
|
163 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
164 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
165 |
+
if mask is not None:
|
166 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
167 |
+
if self.block_length is not None:
|
168 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
169 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
170 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
171 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
172 |
+
p_attn = self.drop(p_attn)
|
173 |
+
output = torch.matmul(p_attn, value)
|
174 |
+
if self.window_size is not None:
|
175 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
176 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
177 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
178 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
179 |
+
return output, p_attn
|
180 |
+
|
181 |
+
def _matmul_with_relative_values(self, x, y):
|
182 |
+
"""
|
183 |
+
x: [b, h, l, m]
|
184 |
+
y: [h or 1, m, d]
|
185 |
+
ret: [b, h, l, d]
|
186 |
+
"""
|
187 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
188 |
+
return ret
|
189 |
+
|
190 |
+
def _matmul_with_relative_keys(self, x, y):
|
191 |
+
"""
|
192 |
+
x: [b, h, l, d]
|
193 |
+
y: [h or 1, m, d]
|
194 |
+
ret: [b, h, l, m]
|
195 |
+
"""
|
196 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
197 |
+
return ret
|
198 |
+
|
199 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
200 |
+
max_relative_position = 2 * self.window_size + 1
|
201 |
+
# Pad first before slice to avoid using cond ops.
|
202 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
203 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
204 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
205 |
+
if pad_length > 0:
|
206 |
+
padded_relative_embeddings = F.pad(
|
207 |
+
relative_embeddings,
|
208 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
209 |
+
else:
|
210 |
+
padded_relative_embeddings = relative_embeddings
|
211 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
212 |
+
return used_relative_embeddings
|
213 |
+
|
214 |
+
def _relative_position_to_absolute_position(self, x):
|
215 |
+
"""
|
216 |
+
x: [b, h, l, 2*l-1]
|
217 |
+
ret: [b, h, l, l]
|
218 |
+
"""
|
219 |
+
batch, heads, length, _ = x.size()
|
220 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
221 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
222 |
+
|
223 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
224 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
225 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
226 |
+
|
227 |
+
# Reshape and slice out the padded elements.
|
228 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
229 |
+
return x_final
|
230 |
+
|
231 |
+
def _absolute_position_to_relative_position(self, x):
|
232 |
+
"""
|
233 |
+
x: [b, h, l, l]
|
234 |
+
ret: [b, h, l, 2*l-1]
|
235 |
+
"""
|
236 |
+
batch, heads, length, _ = x.size()
|
237 |
+
# padd along column
|
238 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
239 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
240 |
+
# add 0's in the beginning that will skew the elements after reshape
|
241 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
242 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
243 |
+
return x_final
|
244 |
+
|
245 |
+
def _attention_bias_proximal(self, length):
|
246 |
+
"""Bias for self-attention to encourage attention to close positions.
|
247 |
+
Args:
|
248 |
+
length: an integer scalar.
|
249 |
+
Returns:
|
250 |
+
a Tensor with shape [1, 1, length, length]
|
251 |
+
"""
|
252 |
+
r = torch.arange(length, dtype=torch.float32)
|
253 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
254 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
255 |
+
|
256 |
+
|
257 |
+
class FFN(nn.Module):
|
258 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
259 |
+
super().__init__()
|
260 |
+
self.in_channels = in_channels
|
261 |
+
self.out_channels = out_channels
|
262 |
+
self.filter_channels = filter_channels
|
263 |
+
self.kernel_size = kernel_size
|
264 |
+
self.p_dropout = p_dropout
|
265 |
+
self.activation = activation
|
266 |
+
self.causal = causal
|
267 |
+
|
268 |
+
if causal:
|
269 |
+
self.padding = self._causal_padding
|
270 |
+
else:
|
271 |
+
self.padding = self._same_padding
|
272 |
+
|
273 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
274 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
275 |
+
self.drop = nn.Dropout(p_dropout)
|
276 |
+
|
277 |
+
def forward(self, x, x_mask):
|
278 |
+
x = self.conv_1(self.padding(x * x_mask))
|
279 |
+
if self.activation == "gelu":
|
280 |
+
x = x * torch.sigmoid(1.702 * x)
|
281 |
+
else:
|
282 |
+
x = torch.relu(x)
|
283 |
+
x = self.drop(x)
|
284 |
+
x = self.conv_2(self.padding(x * x_mask))
|
285 |
+
return x * x_mask
|
286 |
+
|
287 |
+
def _causal_padding(self, x):
|
288 |
+
if self.kernel_size == 1:
|
289 |
+
return x
|
290 |
+
pad_l = self.kernel_size - 1
|
291 |
+
pad_r = 0
|
292 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
293 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
294 |
+
return x
|
295 |
+
|
296 |
+
def _same_padding(self, x):
|
297 |
+
if self.kernel_size == 1:
|
298 |
+
return x
|
299 |
+
pad_l = (self.kernel_size - 1) // 2
|
300 |
+
pad_r = self.kernel_size // 2
|
301 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
302 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
303 |
+
return x
|
commons.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
def slice_pitch_segments(x, ids_str, segment_size=4):
|
8 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
9 |
+
for i in range(x.size(0)):
|
10 |
+
idx_str = ids_str[i]
|
11 |
+
idx_end = idx_str + segment_size
|
12 |
+
ret[i] = x[i, idx_str:idx_end]
|
13 |
+
return ret
|
14 |
+
|
15 |
+
def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
|
16 |
+
b, d, t = x.size()
|
17 |
+
if x_lengths is None:
|
18 |
+
x_lengths = t
|
19 |
+
ids_str_max = x_lengths - segment_size + 1
|
20 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
21 |
+
ret = slice_segments(x, ids_str, segment_size)
|
22 |
+
ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
|
23 |
+
return ret, ret_pitch, ids_str
|
24 |
+
|
25 |
+
def init_weights(m, mean=0.0, std=0.01):
|
26 |
+
classname = m.__class__.__name__
|
27 |
+
if classname.find("Conv") != -1:
|
28 |
+
m.weight.data.normal_(mean, std)
|
29 |
+
|
30 |
+
|
31 |
+
def get_padding(kernel_size, dilation=1):
|
32 |
+
return int((kernel_size*dilation - dilation)/2)
|
33 |
+
|
34 |
+
|
35 |
+
def convert_pad_shape(pad_shape):
|
36 |
+
l = pad_shape[::-1]
|
37 |
+
pad_shape = [item for sublist in l for item in sublist]
|
38 |
+
return pad_shape
|
39 |
+
|
40 |
+
|
41 |
+
def intersperse(lst, item):
|
42 |
+
result = [item] * (len(lst) * 2 + 1)
|
43 |
+
result[1::2] = lst
|
44 |
+
return result
|
45 |
+
|
46 |
+
|
47 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
48 |
+
"""KL(P||Q)"""
|
49 |
+
kl = (logs_q - logs_p) - 0.5
|
50 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
51 |
+
return kl
|
52 |
+
|
53 |
+
|
54 |
+
def rand_gumbel(shape):
|
55 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
56 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
57 |
+
return -torch.log(-torch.log(uniform_samples))
|
58 |
+
|
59 |
+
|
60 |
+
def rand_gumbel_like(x):
|
61 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
62 |
+
return g
|
63 |
+
|
64 |
+
|
65 |
+
def slice_segments(x, ids_str, segment_size=4):
|
66 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
67 |
+
for i in range(x.size(0)):
|
68 |
+
idx_str = ids_str[i]
|
69 |
+
idx_end = idx_str + segment_size
|
70 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
71 |
+
return ret
|
72 |
+
|
73 |
+
|
74 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
75 |
+
b, d, t = x.size()
|
76 |
+
if x_lengths is None:
|
77 |
+
x_lengths = t
|
78 |
+
ids_str_max = x_lengths - segment_size + 1
|
79 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
80 |
+
ret = slice_segments(x, ids_str, segment_size)
|
81 |
+
return ret, ids_str
|
82 |
+
|
83 |
+
|
84 |
+
def rand_spec_segments(x, x_lengths=None, segment_size=4):
|
85 |
+
b, d, t = x.size()
|
86 |
+
if x_lengths is None:
|
87 |
+
x_lengths = t
|
88 |
+
ids_str_max = x_lengths - segment_size
|
89 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
90 |
+
ret = slice_segments(x, ids_str, segment_size)
|
91 |
+
return ret, ids_str
|
92 |
+
|
93 |
+
|
94 |
+
def get_timing_signal_1d(
|
95 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
96 |
+
position = torch.arange(length, dtype=torch.float)
|
97 |
+
num_timescales = channels // 2
|
98 |
+
log_timescale_increment = (
|
99 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
100 |
+
(num_timescales - 1))
|
101 |
+
inv_timescales = min_timescale * torch.exp(
|
102 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
103 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
104 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
105 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
106 |
+
signal = signal.view(1, channels, length)
|
107 |
+
return signal
|
108 |
+
|
109 |
+
|
110 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
111 |
+
b, channels, length = x.size()
|
112 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
113 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
114 |
+
|
115 |
+
|
116 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
117 |
+
b, channels, length = x.size()
|
118 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
119 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
120 |
+
|
121 |
+
|
122 |
+
def subsequent_mask(length):
|
123 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
124 |
+
return mask
|
125 |
+
|
126 |
+
|
127 |
+
@torch.jit.script
|
128 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
129 |
+
n_channels_int = n_channels[0]
|
130 |
+
in_act = input_a + input_b
|
131 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
132 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
133 |
+
acts = t_act * s_act
|
134 |
+
return acts
|
135 |
+
|
136 |
+
|
137 |
+
def convert_pad_shape(pad_shape):
|
138 |
+
l = pad_shape[::-1]
|
139 |
+
pad_shape = [item for sublist in l for item in sublist]
|
140 |
+
return pad_shape
|
141 |
+
|
142 |
+
|
143 |
+
def shift_1d(x):
|
144 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
145 |
+
return x
|
146 |
+
|
147 |
+
|
148 |
+
def sequence_mask(length, max_length=None):
|
149 |
+
if max_length is None:
|
150 |
+
max_length = length.max()
|
151 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
152 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
153 |
+
|
154 |
+
|
155 |
+
def generate_path(duration, mask):
|
156 |
+
"""
|
157 |
+
duration: [b, 1, t_x]
|
158 |
+
mask: [b, 1, t_y, t_x]
|
159 |
+
"""
|
160 |
+
device = duration.device
|
161 |
+
|
162 |
+
b, _, t_y, t_x = mask.shape
|
163 |
+
cum_duration = torch.cumsum(duration, -1)
|
164 |
+
|
165 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
166 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
167 |
+
path = path.view(b, t_x, t_y)
|
168 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
169 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
170 |
+
return path
|
171 |
+
|
172 |
+
|
173 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
174 |
+
if isinstance(parameters, torch.Tensor):
|
175 |
+
parameters = [parameters]
|
176 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
177 |
+
norm_type = float(norm_type)
|
178 |
+
if clip_value is not None:
|
179 |
+
clip_value = float(clip_value)
|
180 |
+
|
181 |
+
total_norm = 0
|
182 |
+
for p in parameters:
|
183 |
+
param_norm = p.grad.data.norm(norm_type)
|
184 |
+
total_norm += param_norm.item() ** norm_type
|
185 |
+
if clip_value is not None:
|
186 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
187 |
+
total_norm = total_norm ** (1. / norm_type)
|
188 |
+
return total_norm
|
data_utils.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
|
8 |
+
import commons
|
9 |
+
from mel_processing import spectrogram_torch, spec_to_mel_torch
|
10 |
+
from utils import load_wav_to_torch, load_filepaths_and_text, transform
|
11 |
+
|
12 |
+
# import h5py
|
13 |
+
|
14 |
+
|
15 |
+
"""Multi speaker version"""
|
16 |
+
|
17 |
+
|
18 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
19 |
+
"""
|
20 |
+
1) loads audio, speaker_id, text pairs
|
21 |
+
2) normalizes text and converts them to sequences of integers
|
22 |
+
3) computes spectrograms from audio files.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, audiopaths, hparams):
|
26 |
+
self.audiopaths = load_filepaths_and_text(audiopaths)
|
27 |
+
self.max_wav_value = hparams.data.max_wav_value
|
28 |
+
self.sampling_rate = hparams.data.sampling_rate
|
29 |
+
self.filter_length = hparams.data.filter_length
|
30 |
+
self.hop_length = hparams.data.hop_length
|
31 |
+
self.win_length = hparams.data.win_length
|
32 |
+
self.sampling_rate = hparams.data.sampling_rate
|
33 |
+
self.use_sr = hparams.train.use_sr
|
34 |
+
self.spec_len = hparams.train.max_speclen
|
35 |
+
self.spk_map = hparams.spk
|
36 |
+
|
37 |
+
random.seed(1234)
|
38 |
+
random.shuffle(self.audiopaths)
|
39 |
+
|
40 |
+
def get_audio(self, filename):
|
41 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
42 |
+
if sampling_rate != self.sampling_rate:
|
43 |
+
raise ValueError("{} SR doesn't match target {} SR".format(
|
44 |
+
sampling_rate, self.sampling_rate))
|
45 |
+
audio_norm = audio / self.max_wav_value
|
46 |
+
audio_norm = audio_norm.unsqueeze(0)
|
47 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
48 |
+
if os.path.exists(spec_filename):
|
49 |
+
spec = torch.load(spec_filename)
|
50 |
+
else:
|
51 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
52 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
53 |
+
center=False)
|
54 |
+
spec = torch.squeeze(spec, 0)
|
55 |
+
torch.save(spec, spec_filename)
|
56 |
+
|
57 |
+
spk = filename.split(os.sep)[-2]
|
58 |
+
spk = torch.LongTensor([self.spk_map[spk]])
|
59 |
+
|
60 |
+
c = torch.load(filename + ".soft.pt").squeeze(0)
|
61 |
+
c = torch.repeat_interleave(c, repeats=2, dim=1)
|
62 |
+
|
63 |
+
f0 = np.load(filename + ".f0.npy")
|
64 |
+
f0 = torch.FloatTensor(f0)
|
65 |
+
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
|
66 |
+
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape, filename)
|
67 |
+
assert abs(lmin - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
68 |
+
assert abs(lmin - c.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
69 |
+
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
|
70 |
+
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
71 |
+
_spec, _c, _audio_norm, _f0 = spec, c, audio_norm, f0
|
72 |
+
while spec.size(-1) < self.spec_len:
|
73 |
+
spec = torch.cat((spec, _spec), -1)
|
74 |
+
c = torch.cat((c, _c), -1)
|
75 |
+
f0 = torch.cat((f0, _f0), -1)
|
76 |
+
audio_norm = torch.cat((audio_norm, _audio_norm), -1)
|
77 |
+
start = random.randint(0, spec.size(-1) - self.spec_len)
|
78 |
+
end = start + self.spec_len
|
79 |
+
spec = spec[:, start:end]
|
80 |
+
c = c[:, start:end]
|
81 |
+
f0 = f0[start:end]
|
82 |
+
audio_norm = audio_norm[:, start * self.hop_length:end * self.hop_length]
|
83 |
+
|
84 |
+
return c, f0, spec, audio_norm, spk
|
85 |
+
|
86 |
+
def __getitem__(self, index):
|
87 |
+
return self.get_audio(self.audiopaths[index][0])
|
88 |
+
|
89 |
+
def __len__(self):
|
90 |
+
return len(self.audiopaths)
|
91 |
+
|
92 |
+
|
93 |
+
class EvalDataLoader(torch.utils.data.Dataset):
|
94 |
+
"""
|
95 |
+
1) loads audio, speaker_id, text pairs
|
96 |
+
2) normalizes text and converts them to sequences of integers
|
97 |
+
3) computes spectrograms from audio files.
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(self, audiopaths, hparams):
|
101 |
+
self.audiopaths = load_filepaths_and_text(audiopaths)
|
102 |
+
self.max_wav_value = hparams.data.max_wav_value
|
103 |
+
self.sampling_rate = hparams.data.sampling_rate
|
104 |
+
self.filter_length = hparams.data.filter_length
|
105 |
+
self.hop_length = hparams.data.hop_length
|
106 |
+
self.win_length = hparams.data.win_length
|
107 |
+
self.sampling_rate = hparams.data.sampling_rate
|
108 |
+
self.use_sr = hparams.train.use_sr
|
109 |
+
self.audiopaths = self.audiopaths[:5]
|
110 |
+
self.spk_map = hparams.spk
|
111 |
+
|
112 |
+
|
113 |
+
def get_audio(self, filename):
|
114 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
115 |
+
if sampling_rate != self.sampling_rate:
|
116 |
+
raise ValueError("{} SR doesn't match target {} SR".format(
|
117 |
+
sampling_rate, self.sampling_rate))
|
118 |
+
audio_norm = audio / self.max_wav_value
|
119 |
+
audio_norm = audio_norm.unsqueeze(0)
|
120 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
121 |
+
if os.path.exists(spec_filename):
|
122 |
+
spec = torch.load(spec_filename)
|
123 |
+
else:
|
124 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
125 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
126 |
+
center=False)
|
127 |
+
spec = torch.squeeze(spec, 0)
|
128 |
+
torch.save(spec, spec_filename)
|
129 |
+
|
130 |
+
spk = filename.split(os.sep)[-2]
|
131 |
+
spk = torch.LongTensor([self.spk_map[spk]])
|
132 |
+
|
133 |
+
c = torch.load(filename + ".soft.pt").squeeze(0)
|
134 |
+
|
135 |
+
c = torch.repeat_interleave(c, repeats=2, dim=1)
|
136 |
+
|
137 |
+
f0 = np.load(filename + ".f0.npy")
|
138 |
+
f0 = torch.FloatTensor(f0)
|
139 |
+
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
|
140 |
+
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
141 |
+
assert abs(f0.shape[0] - spec.shape[-1]) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
142 |
+
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
|
143 |
+
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
144 |
+
|
145 |
+
return c, f0, spec, audio_norm, spk
|
146 |
+
|
147 |
+
def __getitem__(self, index):
|
148 |
+
return self.get_audio(self.audiopaths[index][0])
|
149 |
+
|
150 |
+
def __len__(self):
|
151 |
+
return len(self.audiopaths)
|
152 |
+
|
flask_api.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import soundfile
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
from flask import Flask, request, send_file
|
8 |
+
from flask_cors import CORS
|
9 |
+
|
10 |
+
from inference.infer_tool import Svc, RealTimeVC
|
11 |
+
|
12 |
+
app = Flask(__name__)
|
13 |
+
|
14 |
+
CORS(app)
|
15 |
+
|
16 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
17 |
+
|
18 |
+
|
19 |
+
@app.route("/voiceChangeModel", methods=["POST"])
|
20 |
+
def voice_change_model():
|
21 |
+
request_form = request.form
|
22 |
+
wave_file = request.files.get("sample", None)
|
23 |
+
# 变调信息
|
24 |
+
f_pitch_change = float(request_form.get("fPitchChange", 0))
|
25 |
+
# DAW所需的采样率
|
26 |
+
daw_sample = int(float(request_form.get("sampleRate", 0)))
|
27 |
+
speaker_id = int(float(request_form.get("sSpeakId", 0)))
|
28 |
+
# http获得wav文件并转换
|
29 |
+
input_wav_path = io.BytesIO(wave_file.read())
|
30 |
+
|
31 |
+
# 模型推理
|
32 |
+
if raw_infer:
|
33 |
+
out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
|
34 |
+
tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample)
|
35 |
+
else:
|
36 |
+
out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path)
|
37 |
+
tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample)
|
38 |
+
# 返回音频
|
39 |
+
out_wav_path = io.BytesIO()
|
40 |
+
soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav")
|
41 |
+
out_wav_path.seek(0)
|
42 |
+
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == '__main__':
|
46 |
+
# 启用则为直接切片合成,False为交叉淡化方式
|
47 |
+
# vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音
|
48 |
+
# 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些
|
49 |
+
raw_infer = True
|
50 |
+
# 每个模型和config是唯一对应的
|
51 |
+
model_name = "logs/32k/G_174000-Copy1.pth"
|
52 |
+
config_name = "configs/config.json"
|
53 |
+
svc_model = Svc(model_name, config_name)
|
54 |
+
svc = RealTimeVC()
|
55 |
+
# 此处与vst插件对应,不建议更改
|
56 |
+
app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)
|
inference_main.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
import time
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import librosa
|
7 |
+
import numpy as np
|
8 |
+
import soundfile
|
9 |
+
|
10 |
+
from inference import infer_tool
|
11 |
+
from inference import slicer
|
12 |
+
from inference.infer_tool import Svc
|
13 |
+
|
14 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
15 |
+
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
|
16 |
+
|
17 |
+
model_path = "logs/48k/G_174000-Copy1.pth"
|
18 |
+
config_path = "configs/config.json"
|
19 |
+
svc_model = Svc(model_path, config_path)
|
20 |
+
infer_tool.mkdir(["raw", "results"])
|
21 |
+
|
22 |
+
# 支持多个wav文件,放在raw文件夹下
|
23 |
+
clean_names = ["君の知らない物語-src"]
|
24 |
+
trans = [-5] # 音高调整,支持正负(半音)
|
25 |
+
spk_list = ['yunhao'] # 每次同时合成多语者音色
|
26 |
+
slice_db = -40 # 默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50
|
27 |
+
wav_format = 'flac' # 音频输出格式
|
28 |
+
|
29 |
+
infer_tool.fill_a_to_b(trans, clean_names)
|
30 |
+
for clean_name, tran in zip(clean_names, trans):
|
31 |
+
raw_audio_path = f"raw/{clean_name}"
|
32 |
+
if "." not in raw_audio_path:
|
33 |
+
raw_audio_path += ".wav"
|
34 |
+
infer_tool.format_wav(raw_audio_path)
|
35 |
+
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
36 |
+
audio, sr = librosa.load(wav_path, mono=True, sr=None)
|
37 |
+
wav_hash = infer_tool.get_md5(audio)
|
38 |
+
if wav_hash in chunks_dict.keys():
|
39 |
+
print("load chunks from temp")
|
40 |
+
chunks = chunks_dict[wav_hash]["chunks"]
|
41 |
+
else:
|
42 |
+
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
43 |
+
print(chunks)
|
44 |
+
chunks_dict[wav_hash] = {"chunks": chunks, "time": int(time.time())}
|
45 |
+
infer_tool.write_temp("inference/chunks_temp.json", chunks_dict)
|
46 |
+
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
47 |
+
|
48 |
+
for spk in spk_list:
|
49 |
+
audio = []
|
50 |
+
for (slice_tag, data) in audio_data:
|
51 |
+
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
52 |
+
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
|
53 |
+
raw_path = io.BytesIO()
|
54 |
+
soundfile.write(raw_path, data, audio_sr, format="wav")
|
55 |
+
raw_path.seek(0)
|
56 |
+
if slice_tag:
|
57 |
+
print('jump empty segment')
|
58 |
+
_audio = np.zeros(length)
|
59 |
+
else:
|
60 |
+
out_audio, out_sr = svc_model.infer(spk, tran, raw_path)
|
61 |
+
_audio = out_audio.cpu().numpy()
|
62 |
+
audio.extend(list(_audio))
|
63 |
+
|
64 |
+
res_path = f'./results/{clean_name}_{tran}key_{spk}.{wav_format}'
|
65 |
+
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
|
logs/32k/G_98000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dfe7d808cfe6fa2e424de0b47b2f7544bbae9b97ceace5bb1a892138447e89a
|
3 |
+
size 699505437
|
logs/32k/model in here.txt
ADDED
File without changes
|
losses.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import commons
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.float().detach()
|
12 |
+
gl = gl.float()
|
13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.float()
|
24 |
+
dg = dg.float()
|
25 |
+
r_loss = torch.mean((1-dr)**2)
|
26 |
+
g_loss = torch.mean(dg**2)
|
27 |
+
loss += (r_loss + g_loss)
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.float()
|
39 |
+
l = torch.mean((1-dg)**2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.float()
|
52 |
+
logs_q = logs_q.float()
|
53 |
+
m_p = m_p.float()
|
54 |
+
logs_p = logs_p.float()
|
55 |
+
z_mask = z_mask.float()
|
56 |
+
#print(logs_p)
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
+
kl = torch.sum(kl * z_mask)
|
60 |
+
l = kl / torch.sum(z_mask)
|
61 |
+
return l
|
mel_processing.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.:
|
53 |
+
print('min value is ', torch.min(y))
|
54 |
+
if torch.max(y) > 1.:
|
55 |
+
print('max value is ', torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
+
|
63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
+
y = y.squeeze(1)
|
65 |
+
|
66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
68 |
+
|
69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
+
return spec
|
71 |
+
|
72 |
+
|
73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
+
global mel_basis
|
75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
+
if fmax_dtype_device not in mel_basis:
|
78 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
+
spec = spectral_normalize_torch(spec)
|
82 |
+
return spec
|
83 |
+
|
84 |
+
|
85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
+
if torch.min(y) < -1.:
|
87 |
+
print('min value is ', torch.min(y))
|
88 |
+
if torch.max(y) > 1.:
|
89 |
+
print('max value is ', torch.max(y))
|
90 |
+
|
91 |
+
global mel_basis, hann_window
|
92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
+
if fmax_dtype_device not in mel_basis:
|
96 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
+
if wnsize_dtype_device not in hann_window:
|
99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
+
|
101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
+
y = y.squeeze(1)
|
103 |
+
|
104 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
106 |
+
|
107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
+
|
109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
+
spec = spectral_normalize_torch(spec)
|
111 |
+
|
112 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import attentions
|
8 |
+
import commons
|
9 |
+
import modules
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
from vdecoder.hifigan.models import Generator
|
15 |
+
from utils import f0_to_coarse
|
16 |
+
|
17 |
+
class ResidualCouplingBlock(nn.Module):
|
18 |
+
def __init__(self,
|
19 |
+
channels,
|
20 |
+
hidden_channels,
|
21 |
+
kernel_size,
|
22 |
+
dilation_rate,
|
23 |
+
n_layers,
|
24 |
+
n_flows=4,
|
25 |
+
gin_channels=0):
|
26 |
+
super().__init__()
|
27 |
+
self.channels = channels
|
28 |
+
self.hidden_channels = hidden_channels
|
29 |
+
self.kernel_size = kernel_size
|
30 |
+
self.dilation_rate = dilation_rate
|
31 |
+
self.n_layers = n_layers
|
32 |
+
self.n_flows = n_flows
|
33 |
+
self.gin_channels = gin_channels
|
34 |
+
|
35 |
+
self.flows = nn.ModuleList()
|
36 |
+
for i in range(n_flows):
|
37 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
38 |
+
self.flows.append(modules.Flip())
|
39 |
+
|
40 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
41 |
+
if not reverse:
|
42 |
+
for flow in self.flows:
|
43 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
44 |
+
else:
|
45 |
+
for flow in reversed(self.flows):
|
46 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class Encoder(nn.Module):
|
51 |
+
def __init__(self,
|
52 |
+
in_channels,
|
53 |
+
out_channels,
|
54 |
+
hidden_channels,
|
55 |
+
kernel_size,
|
56 |
+
dilation_rate,
|
57 |
+
n_layers,
|
58 |
+
gin_channels=0):
|
59 |
+
super().__init__()
|
60 |
+
self.in_channels = in_channels
|
61 |
+
self.out_channels = out_channels
|
62 |
+
self.hidden_channels = hidden_channels
|
63 |
+
self.kernel_size = kernel_size
|
64 |
+
self.dilation_rate = dilation_rate
|
65 |
+
self.n_layers = n_layers
|
66 |
+
self.gin_channels = gin_channels
|
67 |
+
|
68 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
69 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
70 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
71 |
+
|
72 |
+
def forward(self, x, x_lengths, g=None):
|
73 |
+
# print(x.shape,x_lengths.shape)
|
74 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
75 |
+
x = self.pre(x) * x_mask
|
76 |
+
x = self.enc(x, x_mask, g=g)
|
77 |
+
stats = self.proj(x) * x_mask
|
78 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
79 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
80 |
+
return z, m, logs, x_mask
|
81 |
+
|
82 |
+
|
83 |
+
class TextEncoder(nn.Module):
|
84 |
+
def __init__(self,
|
85 |
+
in_channels,
|
86 |
+
out_channels,
|
87 |
+
hidden_channels,
|
88 |
+
kernel_size,
|
89 |
+
dilation_rate,
|
90 |
+
n_layers,
|
91 |
+
gin_channels=0,
|
92 |
+
filter_channels=None,
|
93 |
+
n_heads=None,
|
94 |
+
p_dropout=None):
|
95 |
+
super().__init__()
|
96 |
+
self.in_channels = in_channels
|
97 |
+
self.out_channels = out_channels
|
98 |
+
self.hidden_channels = hidden_channels
|
99 |
+
self.kernel_size = kernel_size
|
100 |
+
self.dilation_rate = dilation_rate
|
101 |
+
self.n_layers = n_layers
|
102 |
+
self.gin_channels = gin_channels
|
103 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
104 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
105 |
+
self.f0_emb = nn.Embedding(256, hidden_channels)
|
106 |
+
|
107 |
+
self.enc_ = attentions.Encoder(
|
108 |
+
hidden_channels,
|
109 |
+
filter_channels,
|
110 |
+
n_heads,
|
111 |
+
n_layers,
|
112 |
+
kernel_size,
|
113 |
+
p_dropout)
|
114 |
+
|
115 |
+
def forward(self, x, x_lengths, f0=None):
|
116 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
117 |
+
x = self.pre(x) * x_mask
|
118 |
+
x = x + self.f0_emb(f0).transpose(1,2)
|
119 |
+
x = self.enc_(x * x_mask, x_mask)
|
120 |
+
stats = self.proj(x) * x_mask
|
121 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
122 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
123 |
+
|
124 |
+
return z, m, logs, x_mask
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
class DiscriminatorP(torch.nn.Module):
|
129 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
130 |
+
super(DiscriminatorP, self).__init__()
|
131 |
+
self.period = period
|
132 |
+
self.use_spectral_norm = use_spectral_norm
|
133 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
134 |
+
self.convs = nn.ModuleList([
|
135 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
136 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
137 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
138 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
139 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
140 |
+
])
|
141 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
fmap = []
|
145 |
+
|
146 |
+
# 1d to 2d
|
147 |
+
b, c, t = x.shape
|
148 |
+
if t % self.period != 0: # pad first
|
149 |
+
n_pad = self.period - (t % self.period)
|
150 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
151 |
+
t = t + n_pad
|
152 |
+
x = x.view(b, c, t // self.period, self.period)
|
153 |
+
|
154 |
+
for l in self.convs:
|
155 |
+
x = l(x)
|
156 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
157 |
+
fmap.append(x)
|
158 |
+
x = self.conv_post(x)
|
159 |
+
fmap.append(x)
|
160 |
+
x = torch.flatten(x, 1, -1)
|
161 |
+
|
162 |
+
return x, fmap
|
163 |
+
|
164 |
+
|
165 |
+
class DiscriminatorS(torch.nn.Module):
|
166 |
+
def __init__(self, use_spectral_norm=False):
|
167 |
+
super(DiscriminatorS, self).__init__()
|
168 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
169 |
+
self.convs = nn.ModuleList([
|
170 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
171 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
172 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
173 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
174 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
175 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
176 |
+
])
|
177 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
fmap = []
|
181 |
+
|
182 |
+
for l in self.convs:
|
183 |
+
x = l(x)
|
184 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
185 |
+
fmap.append(x)
|
186 |
+
x = self.conv_post(x)
|
187 |
+
fmap.append(x)
|
188 |
+
x = torch.flatten(x, 1, -1)
|
189 |
+
|
190 |
+
return x, fmap
|
191 |
+
|
192 |
+
|
193 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
194 |
+
def __init__(self, use_spectral_norm=False):
|
195 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
196 |
+
periods = [2,3,5,7,11]
|
197 |
+
|
198 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
199 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
200 |
+
self.discriminators = nn.ModuleList(discs)
|
201 |
+
|
202 |
+
def forward(self, y, y_hat):
|
203 |
+
y_d_rs = []
|
204 |
+
y_d_gs = []
|
205 |
+
fmap_rs = []
|
206 |
+
fmap_gs = []
|
207 |
+
for i, d in enumerate(self.discriminators):
|
208 |
+
y_d_r, fmap_r = d(y)
|
209 |
+
y_d_g, fmap_g = d(y_hat)
|
210 |
+
y_d_rs.append(y_d_r)
|
211 |
+
y_d_gs.append(y_d_g)
|
212 |
+
fmap_rs.append(fmap_r)
|
213 |
+
fmap_gs.append(fmap_g)
|
214 |
+
|
215 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
216 |
+
|
217 |
+
|
218 |
+
class SpeakerEncoder(torch.nn.Module):
|
219 |
+
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
220 |
+
super(SpeakerEncoder, self).__init__()
|
221 |
+
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
222 |
+
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
223 |
+
self.relu = nn.ReLU()
|
224 |
+
|
225 |
+
def forward(self, mels):
|
226 |
+
self.lstm.flatten_parameters()
|
227 |
+
_, (hidden, _) = self.lstm(mels)
|
228 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
229 |
+
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
230 |
+
|
231 |
+
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
232 |
+
mel_slices = []
|
233 |
+
for i in range(0, total_frames-partial_frames, partial_hop):
|
234 |
+
mel_range = torch.arange(i, i+partial_frames)
|
235 |
+
mel_slices.append(mel_range)
|
236 |
+
|
237 |
+
return mel_slices
|
238 |
+
|
239 |
+
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
240 |
+
mel_len = mel.size(1)
|
241 |
+
last_mel = mel[:,-partial_frames:]
|
242 |
+
|
243 |
+
if mel_len > partial_frames:
|
244 |
+
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
245 |
+
mels = list(mel[:,s] for s in mel_slices)
|
246 |
+
mels.append(last_mel)
|
247 |
+
mels = torch.stack(tuple(mels), 0).squeeze(1)
|
248 |
+
|
249 |
+
with torch.no_grad():
|
250 |
+
partial_embeds = self(mels)
|
251 |
+
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
|
252 |
+
#embed = embed / torch.linalg.norm(embed, 2)
|
253 |
+
else:
|
254 |
+
with torch.no_grad():
|
255 |
+
embed = self(last_mel)
|
256 |
+
|
257 |
+
return embed
|
258 |
+
|
259 |
+
|
260 |
+
class SynthesizerTrn(nn.Module):
|
261 |
+
"""
|
262 |
+
Synthesizer for Training
|
263 |
+
"""
|
264 |
+
|
265 |
+
def __init__(self,
|
266 |
+
spec_channels,
|
267 |
+
segment_size,
|
268 |
+
inter_channels,
|
269 |
+
hidden_channels,
|
270 |
+
filter_channels,
|
271 |
+
n_heads,
|
272 |
+
n_layers,
|
273 |
+
kernel_size,
|
274 |
+
p_dropout,
|
275 |
+
resblock,
|
276 |
+
resblock_kernel_sizes,
|
277 |
+
resblock_dilation_sizes,
|
278 |
+
upsample_rates,
|
279 |
+
upsample_initial_channel,
|
280 |
+
upsample_kernel_sizes,
|
281 |
+
gin_channels,
|
282 |
+
ssl_dim,
|
283 |
+
n_speakers,
|
284 |
+
**kwargs):
|
285 |
+
|
286 |
+
super().__init__()
|
287 |
+
self.spec_channels = spec_channels
|
288 |
+
self.inter_channels = inter_channels
|
289 |
+
self.hidden_channels = hidden_channels
|
290 |
+
self.filter_channels = filter_channels
|
291 |
+
self.n_heads = n_heads
|
292 |
+
self.n_layers = n_layers
|
293 |
+
self.kernel_size = kernel_size
|
294 |
+
self.p_dropout = p_dropout
|
295 |
+
self.resblock = resblock
|
296 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
297 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
298 |
+
self.upsample_rates = upsample_rates
|
299 |
+
self.upsample_initial_channel = upsample_initial_channel
|
300 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
301 |
+
self.segment_size = segment_size
|
302 |
+
self.gin_channels = gin_channels
|
303 |
+
self.ssl_dim = ssl_dim
|
304 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
305 |
+
|
306 |
+
self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout)
|
307 |
+
hps = {
|
308 |
+
"sampling_rate": 32000,
|
309 |
+
"inter_channels": 192,
|
310 |
+
"resblock": "1",
|
311 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
312 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
313 |
+
"upsample_rates": [10, 8, 2, 2],
|
314 |
+
"upsample_initial_channel": 512,
|
315 |
+
"upsample_kernel_sizes": [16, 16, 4, 4],
|
316 |
+
"gin_channels": 256,
|
317 |
+
}
|
318 |
+
self.dec = Generator(h=hps)
|
319 |
+
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
320 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
321 |
+
|
322 |
+
def forward(self, c, f0, spec, g=None, mel=None, c_lengths=None, spec_lengths=None):
|
323 |
+
if c_lengths == None:
|
324 |
+
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
325 |
+
if spec_lengths == None:
|
326 |
+
spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
|
327 |
+
|
328 |
+
g = self.emb_g(g).transpose(1,2)
|
329 |
+
|
330 |
+
z_ptemp, m_p, logs_p, _ = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0))
|
331 |
+
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
|
332 |
+
|
333 |
+
z_p = self.flow(z, spec_mask, g=g)
|
334 |
+
z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
|
335 |
+
|
336 |
+
# o = self.dec(z_slice, g=g)
|
337 |
+
o = self.dec(z_slice, g=g, f0=pitch_slice)
|
338 |
+
|
339 |
+
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
340 |
+
|
341 |
+
def infer(self, c, f0, g=None, mel=None, c_lengths=None):
|
342 |
+
if c_lengths == None:
|
343 |
+
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
344 |
+
g = self.emb_g(g).transpose(1,2)
|
345 |
+
|
346 |
+
z_p, m_p, logs_p, c_mask = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0))
|
347 |
+
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
348 |
+
|
349 |
+
o = self.dec(z * c_mask, g=g, f0=f0)
|
350 |
+
|
351 |
+
return o
|
modules.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import commons
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.Module):
|
20 |
+
def __init__(self, channels, eps=1e-5):
|
21 |
+
super().__init__()
|
22 |
+
self.channels = channels
|
23 |
+
self.eps = eps
|
24 |
+
|
25 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
26 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = x.transpose(1, -1)
|
30 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
31 |
+
return x.transpose(1, -1)
|
32 |
+
|
33 |
+
|
34 |
+
class ConvReluNorm(nn.Module):
|
35 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
36 |
+
super().__init__()
|
37 |
+
self.in_channels = in_channels
|
38 |
+
self.hidden_channels = hidden_channels
|
39 |
+
self.out_channels = out_channels
|
40 |
+
self.kernel_size = kernel_size
|
41 |
+
self.n_layers = n_layers
|
42 |
+
self.p_dropout = p_dropout
|
43 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
44 |
+
|
45 |
+
self.conv_layers = nn.ModuleList()
|
46 |
+
self.norm_layers = nn.ModuleList()
|
47 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
48 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
49 |
+
self.relu_drop = nn.Sequential(
|
50 |
+
nn.ReLU(),
|
51 |
+
nn.Dropout(p_dropout))
|
52 |
+
for _ in range(n_layers-1):
|
53 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
54 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
55 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
56 |
+
self.proj.weight.data.zero_()
|
57 |
+
self.proj.bias.data.zero_()
|
58 |
+
|
59 |
+
def forward(self, x, x_mask):
|
60 |
+
x_org = x
|
61 |
+
for i in range(self.n_layers):
|
62 |
+
x = self.conv_layers[i](x * x_mask)
|
63 |
+
x = self.norm_layers[i](x)
|
64 |
+
x = self.relu_drop(x)
|
65 |
+
x = x_org + self.proj(x)
|
66 |
+
return x * x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class DDSConv(nn.Module):
|
70 |
+
"""
|
71 |
+
Dialted and Depth-Separable Convolution
|
72 |
+
"""
|
73 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
74 |
+
super().__init__()
|
75 |
+
self.channels = channels
|
76 |
+
self.kernel_size = kernel_size
|
77 |
+
self.n_layers = n_layers
|
78 |
+
self.p_dropout = p_dropout
|
79 |
+
|
80 |
+
self.drop = nn.Dropout(p_dropout)
|
81 |
+
self.convs_sep = nn.ModuleList()
|
82 |
+
self.convs_1x1 = nn.ModuleList()
|
83 |
+
self.norms_1 = nn.ModuleList()
|
84 |
+
self.norms_2 = nn.ModuleList()
|
85 |
+
for i in range(n_layers):
|
86 |
+
dilation = kernel_size ** i
|
87 |
+
padding = (kernel_size * dilation - dilation) // 2
|
88 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
89 |
+
groups=channels, dilation=dilation, padding=padding
|
90 |
+
))
|
91 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
92 |
+
self.norms_1.append(LayerNorm(channels))
|
93 |
+
self.norms_2.append(LayerNorm(channels))
|
94 |
+
|
95 |
+
def forward(self, x, x_mask, g=None):
|
96 |
+
if g is not None:
|
97 |
+
x = x + g
|
98 |
+
for i in range(self.n_layers):
|
99 |
+
y = self.convs_sep[i](x * x_mask)
|
100 |
+
y = self.norms_1[i](y)
|
101 |
+
y = F.gelu(y)
|
102 |
+
y = self.convs_1x1[i](y)
|
103 |
+
y = self.norms_2[i](y)
|
104 |
+
y = F.gelu(y)
|
105 |
+
y = self.drop(y)
|
106 |
+
x = x + y
|
107 |
+
return x * x_mask
|
108 |
+
|
109 |
+
|
110 |
+
class WN(torch.nn.Module):
|
111 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
112 |
+
super(WN, self).__init__()
|
113 |
+
assert(kernel_size % 2 == 1)
|
114 |
+
self.hidden_channels =hidden_channels
|
115 |
+
self.kernel_size = kernel_size,
|
116 |
+
self.dilation_rate = dilation_rate
|
117 |
+
self.n_layers = n_layers
|
118 |
+
self.gin_channels = gin_channels
|
119 |
+
self.p_dropout = p_dropout
|
120 |
+
|
121 |
+
self.in_layers = torch.nn.ModuleList()
|
122 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
123 |
+
self.drop = nn.Dropout(p_dropout)
|
124 |
+
|
125 |
+
if gin_channels != 0:
|
126 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
127 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
128 |
+
|
129 |
+
for i in range(n_layers):
|
130 |
+
dilation = dilation_rate ** i
|
131 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
132 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
133 |
+
dilation=dilation, padding=padding)
|
134 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
135 |
+
self.in_layers.append(in_layer)
|
136 |
+
|
137 |
+
# last one is not necessary
|
138 |
+
if i < n_layers - 1:
|
139 |
+
res_skip_channels = 2 * hidden_channels
|
140 |
+
else:
|
141 |
+
res_skip_channels = hidden_channels
|
142 |
+
|
143 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
144 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
145 |
+
self.res_skip_layers.append(res_skip_layer)
|
146 |
+
|
147 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
148 |
+
output = torch.zeros_like(x)
|
149 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
150 |
+
|
151 |
+
if g is not None:
|
152 |
+
g = self.cond_layer(g)
|
153 |
+
|
154 |
+
for i in range(self.n_layers):
|
155 |
+
x_in = self.in_layers[i](x)
|
156 |
+
if g is not None:
|
157 |
+
cond_offset = i * 2 * self.hidden_channels
|
158 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
159 |
+
else:
|
160 |
+
g_l = torch.zeros_like(x_in)
|
161 |
+
|
162 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
163 |
+
x_in,
|
164 |
+
g_l,
|
165 |
+
n_channels_tensor)
|
166 |
+
acts = self.drop(acts)
|
167 |
+
|
168 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
169 |
+
if i < self.n_layers - 1:
|
170 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
171 |
+
x = (x + res_acts) * x_mask
|
172 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
173 |
+
else:
|
174 |
+
output = output + res_skip_acts
|
175 |
+
return output * x_mask
|
176 |
+
|
177 |
+
def remove_weight_norm(self):
|
178 |
+
if self.gin_channels != 0:
|
179 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
180 |
+
for l in self.in_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
+
for l in self.res_skip_layers:
|
183 |
+
torch.nn.utils.remove_weight_norm(l)
|
184 |
+
|
185 |
+
|
186 |
+
class ResBlock1(torch.nn.Module):
|
187 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
188 |
+
super(ResBlock1, self).__init__()
|
189 |
+
self.convs1 = nn.ModuleList([
|
190 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
191 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
192 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
193 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
194 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
195 |
+
padding=get_padding(kernel_size, dilation[2])))
|
196 |
+
])
|
197 |
+
self.convs1.apply(init_weights)
|
198 |
+
|
199 |
+
self.convs2 = nn.ModuleList([
|
200 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
201 |
+
padding=get_padding(kernel_size, 1))),
|
202 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
203 |
+
padding=get_padding(kernel_size, 1))),
|
204 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
205 |
+
padding=get_padding(kernel_size, 1)))
|
206 |
+
])
|
207 |
+
self.convs2.apply(init_weights)
|
208 |
+
|
209 |
+
def forward(self, x, x_mask=None):
|
210 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
211 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
212 |
+
if x_mask is not None:
|
213 |
+
xt = xt * x_mask
|
214 |
+
xt = c1(xt)
|
215 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
216 |
+
if x_mask is not None:
|
217 |
+
xt = xt * x_mask
|
218 |
+
xt = c2(xt)
|
219 |
+
x = xt + x
|
220 |
+
if x_mask is not None:
|
221 |
+
x = x * x_mask
|
222 |
+
return x
|
223 |
+
|
224 |
+
def remove_weight_norm(self):
|
225 |
+
for l in self.convs1:
|
226 |
+
remove_weight_norm(l)
|
227 |
+
for l in self.convs2:
|
228 |
+
remove_weight_norm(l)
|
229 |
+
|
230 |
+
|
231 |
+
class ResBlock2(torch.nn.Module):
|
232 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
233 |
+
super(ResBlock2, self).__init__()
|
234 |
+
self.convs = nn.ModuleList([
|
235 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
236 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
237 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
238 |
+
padding=get_padding(kernel_size, dilation[1])))
|
239 |
+
])
|
240 |
+
self.convs.apply(init_weights)
|
241 |
+
|
242 |
+
def forward(self, x, x_mask=None):
|
243 |
+
for c in self.convs:
|
244 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
245 |
+
if x_mask is not None:
|
246 |
+
xt = xt * x_mask
|
247 |
+
xt = c(xt)
|
248 |
+
x = xt + x
|
249 |
+
if x_mask is not None:
|
250 |
+
x = x * x_mask
|
251 |
+
return x
|
252 |
+
|
253 |
+
def remove_weight_norm(self):
|
254 |
+
for l in self.convs:
|
255 |
+
remove_weight_norm(l)
|
256 |
+
|
257 |
+
|
258 |
+
class Log(nn.Module):
|
259 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
260 |
+
if not reverse:
|
261 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
262 |
+
logdet = torch.sum(-y, [1, 2])
|
263 |
+
return y, logdet
|
264 |
+
else:
|
265 |
+
x = torch.exp(x) * x_mask
|
266 |
+
return x
|
267 |
+
|
268 |
+
|
269 |
+
class Flip(nn.Module):
|
270 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
271 |
+
x = torch.flip(x, [1])
|
272 |
+
if not reverse:
|
273 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
274 |
+
return x, logdet
|
275 |
+
else:
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class ElementwiseAffine(nn.Module):
|
280 |
+
def __init__(self, channels):
|
281 |
+
super().__init__()
|
282 |
+
self.channels = channels
|
283 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
284 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
|
286 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
287 |
+
if not reverse:
|
288 |
+
y = self.m + torch.exp(self.logs) * x
|
289 |
+
y = y * x_mask
|
290 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
291 |
+
return y, logdet
|
292 |
+
else:
|
293 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
294 |
+
return x
|
295 |
+
|
296 |
+
|
297 |
+
class ResidualCouplingLayer(nn.Module):
|
298 |
+
def __init__(self,
|
299 |
+
channels,
|
300 |
+
hidden_channels,
|
301 |
+
kernel_size,
|
302 |
+
dilation_rate,
|
303 |
+
n_layers,
|
304 |
+
p_dropout=0,
|
305 |
+
gin_channels=0,
|
306 |
+
mean_only=False):
|
307 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
308 |
+
super().__init__()
|
309 |
+
self.channels = channels
|
310 |
+
self.hidden_channels = hidden_channels
|
311 |
+
self.kernel_size = kernel_size
|
312 |
+
self.dilation_rate = dilation_rate
|
313 |
+
self.n_layers = n_layers
|
314 |
+
self.half_channels = channels // 2
|
315 |
+
self.mean_only = mean_only
|
316 |
+
|
317 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
318 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
319 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
320 |
+
self.post.weight.data.zero_()
|
321 |
+
self.post.bias.data.zero_()
|
322 |
+
|
323 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
324 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
325 |
+
h = self.pre(x0) * x_mask
|
326 |
+
h = self.enc(h, x_mask, g=g)
|
327 |
+
stats = self.post(h) * x_mask
|
328 |
+
if not self.mean_only:
|
329 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
330 |
+
else:
|
331 |
+
m = stats
|
332 |
+
logs = torch.zeros_like(m)
|
333 |
+
|
334 |
+
if not reverse:
|
335 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
336 |
+
x = torch.cat([x0, x1], 1)
|
337 |
+
logdet = torch.sum(logs, [1,2])
|
338 |
+
return x, logdet
|
339 |
+
else:
|
340 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
341 |
+
x = torch.cat([x0, x1], 1)
|
342 |
+
return x
|
preprocess_flist_config.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from tqdm import tqdm
|
4 |
+
from random import shuffle
|
5 |
+
import json
|
6 |
+
config_template = {
|
7 |
+
"train": {
|
8 |
+
"log_interval": 200,
|
9 |
+
"eval_interval": 1000,
|
10 |
+
"seed": 1234,
|
11 |
+
"epochs": 10000,
|
12 |
+
"learning_rate": 2e-4,
|
13 |
+
"betas": [0.8, 0.99],
|
14 |
+
"eps": 1e-9,
|
15 |
+
"batch_size": 12,
|
16 |
+
"fp16_run": False,
|
17 |
+
"lr_decay": 0.999875,
|
18 |
+
"segment_size": 17920,
|
19 |
+
"init_lr_ratio": 1,
|
20 |
+
"warmup_epochs": 0,
|
21 |
+
"c_mel": 45,
|
22 |
+
"c_kl": 1.0,
|
23 |
+
"use_sr": True,
|
24 |
+
"max_speclen": 384,
|
25 |
+
"port": "8001"
|
26 |
+
},
|
27 |
+
"data": {
|
28 |
+
"training_files":"filelists/train.txt",
|
29 |
+
"validation_files":"filelists/val.txt",
|
30 |
+
"max_wav_value": 32768.0,
|
31 |
+
"sampling_rate": 32000,
|
32 |
+
"filter_length": 1280,
|
33 |
+
"hop_length": 320,
|
34 |
+
"win_length": 1280,
|
35 |
+
"n_mel_channels": 80,
|
36 |
+
"mel_fmin": 0.0,
|
37 |
+
"mel_fmax": None
|
38 |
+
},
|
39 |
+
"model": {
|
40 |
+
"inter_channels": 192,
|
41 |
+
"hidden_channels": 192,
|
42 |
+
"filter_channels": 768,
|
43 |
+
"n_heads": 2,
|
44 |
+
"n_layers": 6,
|
45 |
+
"kernel_size": 3,
|
46 |
+
"p_dropout": 0.1,
|
47 |
+
"resblock": "1",
|
48 |
+
"resblock_kernel_sizes": [3,7,11],
|
49 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
50 |
+
"upsample_rates": [10,8,2,2],
|
51 |
+
"upsample_initial_channel": 512,
|
52 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
53 |
+
"n_layers_q": 3,
|
54 |
+
"use_spectral_norm": False,
|
55 |
+
"gin_channels": 256,
|
56 |
+
"ssl_dim": 256,
|
57 |
+
"n_speakers": 0,
|
58 |
+
},
|
59 |
+
"spk":{
|
60 |
+
"nen": 0,
|
61 |
+
"paimon": 1,
|
62 |
+
"yunhao": 2
|
63 |
+
}
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
parser = argparse.ArgumentParser()
|
69 |
+
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
|
70 |
+
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
|
71 |
+
parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
|
72 |
+
parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir")
|
73 |
+
args = parser.parse_args()
|
74 |
+
|
75 |
+
train = []
|
76 |
+
val = []
|
77 |
+
test = []
|
78 |
+
idx = 0
|
79 |
+
spk_dict = {}
|
80 |
+
spk_id = 0
|
81 |
+
for speaker in tqdm(os.listdir(args.source_dir)):
|
82 |
+
spk_dict[speaker] = spk_id
|
83 |
+
spk_id += 1
|
84 |
+
wavs = [os.path.join(args.source_dir, speaker, i)for i in os.listdir(os.path.join(args.source_dir, speaker))]
|
85 |
+
wavs = [i for i in wavs if i.endswith("wav")]
|
86 |
+
shuffle(wavs)
|
87 |
+
train += wavs[2:-10]
|
88 |
+
val += wavs[:2]
|
89 |
+
test += wavs[-10:]
|
90 |
+
n_speakers = len(spk_dict.keys())*2
|
91 |
+
shuffle(train)
|
92 |
+
shuffle(val)
|
93 |
+
shuffle(test)
|
94 |
+
|
95 |
+
print("Writing", args.train_list)
|
96 |
+
with open(args.train_list, "w") as f:
|
97 |
+
for fname in tqdm(train):
|
98 |
+
wavpath = fname
|
99 |
+
f.write(wavpath + "\n")
|
100 |
+
|
101 |
+
print("Writing", args.val_list)
|
102 |
+
with open(args.val_list, "w") as f:
|
103 |
+
for fname in tqdm(val):
|
104 |
+
wavpath = fname
|
105 |
+
f.write(wavpath + "\n")
|
106 |
+
|
107 |
+
print("Writing", args.test_list)
|
108 |
+
with open(args.test_list, "w") as f:
|
109 |
+
for fname in tqdm(test):
|
110 |
+
wavpath = fname
|
111 |
+
f.write(wavpath + "\n")
|
112 |
+
|
113 |
+
config_template["model"]["n_speakers"] = n_speakers
|
114 |
+
config_template["spk"] = spk_dict
|
115 |
+
print("Writing configs/config.json")
|
116 |
+
with open("configs/config.json", "w") as f:
|
117 |
+
json.dump(config_template, f, indent=2)
|
preprocess_hubert_f0.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import json
|
6 |
+
from glob import glob
|
7 |
+
|
8 |
+
from pyworld import pyworld
|
9 |
+
from tqdm import tqdm
|
10 |
+
from scipy.io import wavfile
|
11 |
+
|
12 |
+
import utils
|
13 |
+
from mel_processing import mel_spectrogram_torch
|
14 |
+
#import h5py
|
15 |
+
import logging
|
16 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
17 |
+
|
18 |
+
import parselmouth
|
19 |
+
import librosa
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
|
23 |
+
def get_f0(path,p_len=None, f0_up_key=0):
|
24 |
+
x, _ = librosa.load(path, 32000)
|
25 |
+
if p_len is None:
|
26 |
+
p_len = x.shape[0]//320
|
27 |
+
else:
|
28 |
+
assert abs(p_len-x.shape[0]//320) < 3, (path, p_len, x.shape)
|
29 |
+
time_step = 320 / 32000 * 1000
|
30 |
+
f0_min = 50
|
31 |
+
f0_max = 1100
|
32 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
33 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
34 |
+
|
35 |
+
f0 = parselmouth.Sound(x, 32000).to_pitch_ac(
|
36 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
37 |
+
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
38 |
+
|
39 |
+
pad_size=(p_len - len(f0) + 1) // 2
|
40 |
+
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
41 |
+
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
42 |
+
|
43 |
+
f0bak = f0.copy()
|
44 |
+
f0 *= pow(2, f0_up_key / 12)
|
45 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
46 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
47 |
+
f0_mel[f0_mel <= 1] = 1
|
48 |
+
f0_mel[f0_mel > 255] = 255
|
49 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
50 |
+
return f0_coarse, f0bak
|
51 |
+
|
52 |
+
def resize2d(x, target_len):
|
53 |
+
source = np.array(x)
|
54 |
+
source[source<0.001] = np.nan
|
55 |
+
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
56 |
+
res = np.nan_to_num(target)
|
57 |
+
return res
|
58 |
+
|
59 |
+
def compute_f0(path, c_len):
|
60 |
+
x, sr = librosa.load(path, sr=32000)
|
61 |
+
f0, t = pyworld.dio(
|
62 |
+
x.astype(np.double),
|
63 |
+
fs=sr,
|
64 |
+
f0_ceil=800,
|
65 |
+
frame_period=1000 * 320 / sr,
|
66 |
+
)
|
67 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, 32000)
|
68 |
+
for index, pitch in enumerate(f0):
|
69 |
+
f0[index] = round(pitch, 1)
|
70 |
+
assert abs(c_len - x.shape[0]//320) < 3, (c_len, f0.shape)
|
71 |
+
|
72 |
+
return None, resize2d(f0, c_len)
|
73 |
+
|
74 |
+
|
75 |
+
def process(filename):
|
76 |
+
print(filename)
|
77 |
+
save_name = filename+".soft.pt"
|
78 |
+
if not os.path.exists(save_name):
|
79 |
+
devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
80 |
+
wav, _ = librosa.load(filename, sr=16000)
|
81 |
+
wav = torch.from_numpy(wav).unsqueeze(0).to(devive)
|
82 |
+
c = utils.get_hubert_content(hmodel, wav)
|
83 |
+
torch.save(c.cpu(), save_name)
|
84 |
+
else:
|
85 |
+
c = torch.load(save_name)
|
86 |
+
f0path = filename+".f0.npy"
|
87 |
+
if not os.path.exists(f0path):
|
88 |
+
cf0, f0 = compute_f0(filename, c.shape[-1] * 2)
|
89 |
+
np.save(f0path, f0)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
if __name__ == "__main__":
|
94 |
+
parser = argparse.ArgumentParser()
|
95 |
+
parser.add_argument("--in_dir", type=str, default="dataset/32k", help="path to input dir")
|
96 |
+
args = parser.parse_args()
|
97 |
+
|
98 |
+
print("Loading hubert for content...")
|
99 |
+
hmodel = utils.get_hubert_model(0 if torch.cuda.is_available() else None)
|
100 |
+
print("Loaded hubert.")
|
101 |
+
|
102 |
+
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True)#[:10]
|
103 |
+
|
104 |
+
for filename in tqdm(filenames):
|
105 |
+
process(filename)
|
106 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
playsound
|
3 |
+
pydub
|
4 |
+
pyworld
|
5 |
+
requests
|
6 |
+
scipy
|
7 |
+
sounddevice
|
8 |
+
SoundFile
|
9 |
+
starlette
|
10 |
+
torch
|
11 |
+
torchaudio
|
12 |
+
tqdm
|
13 |
+
scikit-maad
|
14 |
+
praat-parselmouth
|
15 |
+
librosa
|
16 |
+
torchvision
|
resample.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
from multiprocessing import Pool, cpu_count
|
6 |
+
from scipy.io import wavfile
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
|
10 |
+
def process(item):
|
11 |
+
spkdir, wav_name, args = item
|
12 |
+
# speaker 's5', 'p280', 'p315' are excluded,
|
13 |
+
speaker = spkdir.split(os.sep)[-1]
|
14 |
+
wav_path = os.path.join(args.in_dir, speaker, wav_name)
|
15 |
+
if os.path.exists(wav_path) and '.wav' in wav_path:
|
16 |
+
os.makedirs(os.path.join(args.out_dir2, speaker), exist_ok=True)
|
17 |
+
wav, sr = librosa.load(wav_path, None)
|
18 |
+
wav, _ = librosa.effects.trim(wav, top_db=20)
|
19 |
+
peak = np.abs(wav).max()
|
20 |
+
if peak > 1.0:
|
21 |
+
wav = 0.98 * wav / peak
|
22 |
+
wav2 = librosa.resample(wav, orig_sr=sr, target_sr=args.sr2)
|
23 |
+
save_name = wav_name
|
24 |
+
save_path2 = os.path.join(args.out_dir2, speaker, save_name)
|
25 |
+
wavfile.write(
|
26 |
+
save_path2,
|
27 |
+
args.sr2,
|
28 |
+
(wav2 * np.iinfo(np.int16).max).astype(np.int16)
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
parser = argparse.ArgumentParser()
|
35 |
+
parser.add_argument("--sr2", type=int, default=32000, help="sampling rate")
|
36 |
+
parser.add_argument("--in_dir", type=str, default="./dataset_raw", help="path to source dir")
|
37 |
+
parser.add_argument("--out_dir2", type=str, default="./dataset/32k", help="path to target dir")
|
38 |
+
args = parser.parse_args()
|
39 |
+
processs = cpu_count()-2 if cpu_count() >4 else 1
|
40 |
+
pool = Pool(processes=processs)
|
41 |
+
|
42 |
+
for speaker in os.listdir(args.in_dir):
|
43 |
+
spk_dir = os.path.join(args.in_dir, speaker)
|
44 |
+
if os.path.isdir(spk_dir):
|
45 |
+
print(spk_dir)
|
46 |
+
for _ in tqdm(pool.imap_unordered(process, [(spk_dir, i, args) for i in os.listdir(spk_dir) if i.endswith("wav")])):
|
47 |
+
pass
|
spec_gen.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from data_utils import TextAudioSpeakerLoader, EvalDataLoader
|
2 |
+
import json
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
from utils import HParams
|
6 |
+
|
7 |
+
config_path = 'configs/config.json'
|
8 |
+
with open(config_path, "r") as f:
|
9 |
+
data = f.read()
|
10 |
+
config = json.loads(data)
|
11 |
+
hps = HParams(**config)
|
12 |
+
|
13 |
+
train_dataset = TextAudioSpeakerLoader("filelists/train.txt", hps)
|
14 |
+
test_dataset = TextAudioSpeakerLoader("filelists/test.txt", hps)
|
15 |
+
eval_dataset = TextAudioSpeakerLoader("filelists/val.txt", hps)
|
16 |
+
|
17 |
+
for _ in tqdm(train_dataset):
|
18 |
+
pass
|
19 |
+
for _ in tqdm(eval_dataset):
|
20 |
+
pass
|
21 |
+
for _ in tqdm(test_dataset):
|
22 |
+
pass
|
terms.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
在使用此模型前请阅读以下协议,本协议修改自MasterSatori
|
2 |
+
|
3 |
+
AI粘连科技模型使用协议
|
4 |
+
|
5 |
+
【前言】AI粘连科技模型所有者及训练者海龙王kokopelli@bilibili(以下也称“我”)希望通过《AI粘连科技模模型使用协议》(以下简称“本协议”)向您说明您在使用AI粘连科技模模型时应当履行的责任及使用范围。
|
6 |
+
|
7 |
+
【特别提示】在使用AI粘连科技模模型前,请您务必仔细阅读并透彻理解本协议,在确认充分理解并同意后再开始使用。
|
8 |
+
|
9 |
+
本协议将帮助您了解以下内容:
|
10 |
+
|
11 |
+
一、免责声明
|
12 |
+
|
13 |
+
二、您在非个人使用场合时使用AI粘连科技模型应当做的事
|
14 |
+
|
15 |
+
三、AI粘连科技的使用范围
|
16 |
+
|
17 |
+
四、如何联系我
|
18 |
+
|
19 |
+
(一) 免责声明:
|
20 |
+
|
21 |
+
您因使用AI粘连科技对其它任何实体(个人/企业)所造成的任何损失由您自身承担,您因使用AI粘连科技模型所产生的一切法律风险及法律纠纷由您自身承担。
|
22 |
+
|
23 |
+
(二) 您在非个人使用场合时使用AI粘连科技模型应当做的事:
|
24 |
+
|
25 |
+
1、注明soVITS项目作者:Rcell
|
26 |
+
|
27 |
+
2、注明我(可选):海龙王kokopelli@bilibili
|
28 |
+
|
29 |
+
(三) AI粘连科技模型的使用范围:
|
30 |
+
|
31 |
+
1、您可以使用的范围:
|
32 |
+
|
33 |
+
(1) 个人使用
|
34 |
+
|
35 |
+
(2) 将产生的音频用于投稿(投稿内容不得包含“您不可使用的范围”中的内容)
|
36 |
+
|
37 |
+
(3) 符合投稿平台和当地法律的二创内容
|
38 |
+
|
39 |
+
(4) 使用本软件必须注明作品使用了AI
|
40 |
+
|
41 |
+
2、您不可使用的范围:
|
42 |
+
|
43 |
+
(1) 商业使用
|
44 |
+
|
45 |
+
(2) 假冒本人
|
46 |
+
|
47 |
+
(3) 当作变声器等使用
|
48 |
+
|
49 |
+
(4) 将AI粘连科技模型再次上传
|
50 |
+
|
51 |
+
(5) 低创内容(合成的音频中有过多的爆音或电音属于“低创内容”)
|
52 |
+
|
53 |
+
(6) 敏感内容(包括但不限于:政治、低俗、色情、暴力等)
|
54 |
+
|
55 |
+
3、补充内容:
|
56 |
+
|
57 |
+
在其他未被提及的场合使用AI草莓猫taffy模型及其所产生的数据时您应当征求我的意见.海龙王kokopelli@bilibili。
|
train.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import argparse
|
6 |
+
import itertools
|
7 |
+
import math
|
8 |
+
import torch
|
9 |
+
from torch import nn, optim
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from torch.utils.tensorboard import SummaryWriter
|
13 |
+
import torch.multiprocessing as mp
|
14 |
+
import torch.distributed as dist
|
15 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
16 |
+
from torch.cuda.amp import autocast, GradScaler
|
17 |
+
|
18 |
+
import commons
|
19 |
+
import utils
|
20 |
+
from data_utils import TextAudioSpeakerLoader, EvalDataLoader
|
21 |
+
from models import (
|
22 |
+
SynthesizerTrn,
|
23 |
+
MultiPeriodDiscriminator,
|
24 |
+
)
|
25 |
+
from losses import (
|
26 |
+
kl_loss,
|
27 |
+
generator_loss, discriminator_loss, feature_loss
|
28 |
+
)
|
29 |
+
|
30 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
31 |
+
|
32 |
+
torch.backends.cudnn.benchmark = True
|
33 |
+
global_step = 0
|
34 |
+
|
35 |
+
|
36 |
+
# os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
|
37 |
+
|
38 |
+
|
39 |
+
def main():
|
40 |
+
"""Assume Single Node Multi GPUs Training Only"""
|
41 |
+
assert torch.cuda.is_available(), "CPU training is not allowed."
|
42 |
+
hps = utils.get_hparams()
|
43 |
+
|
44 |
+
n_gpus = torch.cuda.device_count()
|
45 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
46 |
+
os.environ['MASTER_PORT'] = hps.train.port
|
47 |
+
|
48 |
+
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
49 |
+
|
50 |
+
|
51 |
+
def run(rank, n_gpus, hps):
|
52 |
+
global global_step
|
53 |
+
if rank == 0:
|
54 |
+
logger = utils.get_logger(hps.model_dir)
|
55 |
+
logger.info(hps)
|
56 |
+
utils.check_git_hash(hps.model_dir)
|
57 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
58 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
59 |
+
|
60 |
+
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
|
61 |
+
torch.manual_seed(hps.train.seed)
|
62 |
+
torch.cuda.set_device(rank)
|
63 |
+
|
64 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
|
65 |
+
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
|
66 |
+
batch_size=hps.train.batch_size)
|
67 |
+
if rank == 0:
|
68 |
+
eval_dataset = EvalDataLoader(hps.data.validation_files, hps)
|
69 |
+
eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
|
70 |
+
batch_size=1, pin_memory=False,
|
71 |
+
drop_last=False)
|
72 |
+
|
73 |
+
net_g = SynthesizerTrn(
|
74 |
+
hps.data.filter_length // 2 + 1,
|
75 |
+
hps.train.segment_size // hps.data.hop_length,
|
76 |
+
**hps.model).cuda(rank)
|
77 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
78 |
+
optim_g = torch.optim.AdamW(
|
79 |
+
net_g.parameters(),
|
80 |
+
hps.train.learning_rate,
|
81 |
+
betas=hps.train.betas,
|
82 |
+
eps=hps.train.eps)
|
83 |
+
optim_d = torch.optim.AdamW(
|
84 |
+
net_d.parameters(),
|
85 |
+
hps.train.learning_rate,
|
86 |
+
betas=hps.train.betas,
|
87 |
+
eps=hps.train.eps)
|
88 |
+
net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True)
|
89 |
+
net_d = DDP(net_d, device_ids=[rank])
|
90 |
+
|
91 |
+
try:
|
92 |
+
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
|
93 |
+
optim_g)
|
94 |
+
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
|
95 |
+
optim_d)
|
96 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
97 |
+
except:
|
98 |
+
epoch_str = 1
|
99 |
+
global_step = 0
|
100 |
+
|
101 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
102 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
103 |
+
|
104 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
105 |
+
|
106 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
107 |
+
if rank == 0:
|
108 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
109 |
+
[train_loader, eval_loader], logger, [writer, writer_eval])
|
110 |
+
else:
|
111 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
112 |
+
[train_loader, None], None, None)
|
113 |
+
scheduler_g.step()
|
114 |
+
scheduler_d.step()
|
115 |
+
|
116 |
+
|
117 |
+
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
118 |
+
net_g, net_d = nets
|
119 |
+
optim_g, optim_d = optims
|
120 |
+
scheduler_g, scheduler_d = schedulers
|
121 |
+
train_loader, eval_loader = loaders
|
122 |
+
if writers is not None:
|
123 |
+
writer, writer_eval = writers
|
124 |
+
|
125 |
+
# train_loader.batch_sampler.set_epoch(epoch)
|
126 |
+
global global_step
|
127 |
+
|
128 |
+
net_g.train()
|
129 |
+
net_d.train()
|
130 |
+
for batch_idx, items in enumerate(train_loader):
|
131 |
+
c, f0, spec, y, spk = items
|
132 |
+
g = spk.cuda(rank, non_blocking=True)
|
133 |
+
spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
|
134 |
+
c = c.cuda(rank, non_blocking=True)
|
135 |
+
f0 = f0.cuda(rank, non_blocking=True)
|
136 |
+
mel = spec_to_mel_torch(
|
137 |
+
spec,
|
138 |
+
hps.data.filter_length,
|
139 |
+
hps.data.n_mel_channels,
|
140 |
+
hps.data.sampling_rate,
|
141 |
+
hps.data.mel_fmin,
|
142 |
+
hps.data.mel_fmax)
|
143 |
+
|
144 |
+
with autocast(enabled=hps.train.fp16_run):
|
145 |
+
y_hat, ids_slice, z_mask, \
|
146 |
+
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(c, f0, spec, g=g, mel=mel)
|
147 |
+
|
148 |
+
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
149 |
+
y_hat_mel = mel_spectrogram_torch(
|
150 |
+
y_hat.squeeze(1),
|
151 |
+
hps.data.filter_length,
|
152 |
+
hps.data.n_mel_channels,
|
153 |
+
hps.data.sampling_rate,
|
154 |
+
hps.data.hop_length,
|
155 |
+
hps.data.win_length,
|
156 |
+
hps.data.mel_fmin,
|
157 |
+
hps.data.mel_fmax
|
158 |
+
)
|
159 |
+
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
160 |
+
|
161 |
+
# Discriminator
|
162 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
163 |
+
|
164 |
+
with autocast(enabled=False):
|
165 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
166 |
+
loss_disc_all = loss_disc
|
167 |
+
|
168 |
+
optim_d.zero_grad()
|
169 |
+
scaler.scale(loss_disc_all).backward()
|
170 |
+
scaler.unscale_(optim_d)
|
171 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
172 |
+
scaler.step(optim_d)
|
173 |
+
|
174 |
+
with autocast(enabled=hps.train.fp16_run):
|
175 |
+
# Generator
|
176 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
177 |
+
with autocast(enabled=False):
|
178 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
179 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
180 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
181 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
182 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
|
183 |
+
optim_g.zero_grad()
|
184 |
+
scaler.scale(loss_gen_all).backward()
|
185 |
+
scaler.unscale_(optim_g)
|
186 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
187 |
+
scaler.step(optim_g)
|
188 |
+
scaler.update()
|
189 |
+
|
190 |
+
if rank == 0:
|
191 |
+
if global_step % hps.train.log_interval == 0:
|
192 |
+
lr = optim_g.param_groups[0]['lr']
|
193 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
|
194 |
+
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
195 |
+
epoch,
|
196 |
+
100. * batch_idx / len(train_loader)))
|
197 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
198 |
+
|
199 |
+
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
|
200 |
+
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
|
201 |
+
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl})
|
202 |
+
|
203 |
+
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
204 |
+
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
205 |
+
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
206 |
+
image_dict = {
|
207 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
208 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
209 |
+
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
210 |
+
}
|
211 |
+
|
212 |
+
utils.summarize(
|
213 |
+
writer=writer,
|
214 |
+
global_step=global_step,
|
215 |
+
images=image_dict,
|
216 |
+
scalars=scalar_dict
|
217 |
+
)
|
218 |
+
|
219 |
+
if global_step % hps.train.eval_interval == 0:
|
220 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
221 |
+
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
|
222 |
+
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
|
223 |
+
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
|
224 |
+
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
|
225 |
+
global_step += 1
|
226 |
+
|
227 |
+
if rank == 0:
|
228 |
+
logger.info('====> Epoch: {}'.format(epoch))
|
229 |
+
|
230 |
+
|
231 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
232 |
+
generator.eval()
|
233 |
+
image_dict = {}
|
234 |
+
audio_dict = {}
|
235 |
+
with torch.no_grad():
|
236 |
+
for batch_idx, items in enumerate(eval_loader):
|
237 |
+
c, f0, spec, y, spk = items
|
238 |
+
g = spk[:1].cuda(0)
|
239 |
+
spec, y = spec[:1].cuda(0), y[:1].cuda(0)
|
240 |
+
c = c[:1].cuda(0)
|
241 |
+
f0 = f0[:1].cuda(0)
|
242 |
+
mel = spec_to_mel_torch(
|
243 |
+
spec,
|
244 |
+
hps.data.filter_length,
|
245 |
+
hps.data.n_mel_channels,
|
246 |
+
hps.data.sampling_rate,
|
247 |
+
hps.data.mel_fmin,
|
248 |
+
hps.data.mel_fmax)
|
249 |
+
y_hat = generator.module.infer(c, f0, g=g, mel=mel)
|
250 |
+
|
251 |
+
y_hat_mel = mel_spectrogram_torch(
|
252 |
+
y_hat.squeeze(1).float(),
|
253 |
+
hps.data.filter_length,
|
254 |
+
hps.data.n_mel_channels,
|
255 |
+
hps.data.sampling_rate,
|
256 |
+
hps.data.hop_length,
|
257 |
+
hps.data.win_length,
|
258 |
+
hps.data.mel_fmin,
|
259 |
+
hps.data.mel_fmax
|
260 |
+
)
|
261 |
+
|
262 |
+
audio_dict.update({
|
263 |
+
f"gen/audio_{batch_idx}": y_hat[0],
|
264 |
+
f"gt/audio_{batch_idx}": y[0]
|
265 |
+
})
|
266 |
+
image_dict.update({
|
267 |
+
f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
|
268 |
+
"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
|
269 |
+
})
|
270 |
+
utils.summarize(
|
271 |
+
writer=writer_eval,
|
272 |
+
global_step=global_step,
|
273 |
+
images=image_dict,
|
274 |
+
audios=audio_dict,
|
275 |
+
audio_sampling_rate=hps.data.sampling_rate
|
276 |
+
)
|
277 |
+
generator.train()
|
278 |
+
|
279 |
+
|
280 |
+
if __name__ == "__main__":
|
281 |
+
main()
|
utils.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import sys
|
4 |
+
import argparse
|
5 |
+
import logging
|
6 |
+
import json
|
7 |
+
import subprocess
|
8 |
+
|
9 |
+
import librosa
|
10 |
+
import numpy as np
|
11 |
+
import torchaudio
|
12 |
+
from scipy.io.wavfile import read
|
13 |
+
import torch
|
14 |
+
import torchvision
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from commons import sequence_mask
|
17 |
+
from hubert import hubert_model
|
18 |
+
MATPLOTLIB_FLAG = False
|
19 |
+
|
20 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
21 |
+
logger = logging
|
22 |
+
|
23 |
+
f0_bin = 256
|
24 |
+
f0_max = 1100.0
|
25 |
+
f0_min = 50.0
|
26 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
27 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
28 |
+
|
29 |
+
def f0_to_coarse(f0):
|
30 |
+
is_torch = isinstance(f0, torch.Tensor)
|
31 |
+
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
|
32 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
|
33 |
+
|
34 |
+
f0_mel[f0_mel <= 1] = 1
|
35 |
+
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
|
36 |
+
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
|
37 |
+
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
|
38 |
+
return f0_coarse
|
39 |
+
|
40 |
+
|
41 |
+
def get_hubert_model(rank=None):
|
42 |
+
|
43 |
+
hubert_soft = hubert_model.hubert_soft("hubert/hubert-soft-0d54a1f4.pt")
|
44 |
+
if rank is not None:
|
45 |
+
hubert_soft = hubert_soft.cuda(rank)
|
46 |
+
return hubert_soft
|
47 |
+
|
48 |
+
def get_hubert_content(hmodel, y=None, path=None):
|
49 |
+
if path is not None:
|
50 |
+
source, sr = torchaudio.load(path)
|
51 |
+
source = torchaudio.functional.resample(source, sr, 16000)
|
52 |
+
if len(source.shape) == 2 and source.shape[1] >= 2:
|
53 |
+
source = torch.mean(source, dim=0).unsqueeze(0)
|
54 |
+
else:
|
55 |
+
source = y
|
56 |
+
source = source.unsqueeze(0)
|
57 |
+
with torch.inference_mode():
|
58 |
+
units = hmodel.units(source)
|
59 |
+
return units.transpose(1,2)
|
60 |
+
|
61 |
+
|
62 |
+
def get_content(cmodel, y):
|
63 |
+
with torch.no_grad():
|
64 |
+
c = cmodel.extract_features(y.squeeze(1))[0]
|
65 |
+
c = c.transpose(1, 2)
|
66 |
+
return c
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
def transform(mel, height): # 68-92
|
71 |
+
#r = np.random.random()
|
72 |
+
#rate = r * 0.3 + 0.85 # 0.85-1.15
|
73 |
+
#height = int(mel.size(-2) * rate)
|
74 |
+
tgt = torchvision.transforms.functional.resize(mel, (height, mel.size(-1)))
|
75 |
+
if height >= mel.size(-2):
|
76 |
+
return tgt[:, :mel.size(-2), :]
|
77 |
+
else:
|
78 |
+
silence = tgt[:,-1:,:].repeat(1,mel.size(-2)-height,1)
|
79 |
+
silence += torch.randn_like(silence) / 10
|
80 |
+
return torch.cat((tgt, silence), 1)
|
81 |
+
|
82 |
+
|
83 |
+
def stretch(mel, width): # 0.5-2
|
84 |
+
return torchvision.transforms.functional.resize(mel, (mel.size(-2), width))
|
85 |
+
|
86 |
+
|
87 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
88 |
+
assert os.path.isfile(checkpoint_path)
|
89 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
90 |
+
iteration = checkpoint_dict['iteration']
|
91 |
+
learning_rate = checkpoint_dict['learning_rate']
|
92 |
+
if iteration is None:
|
93 |
+
iteration = 1
|
94 |
+
if learning_rate is None:
|
95 |
+
learning_rate = 0.0002
|
96 |
+
if optimizer is not None and checkpoint_dict['optimizer'] is not None:
|
97 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
98 |
+
saved_state_dict = checkpoint_dict['model']
|
99 |
+
if hasattr(model, 'module'):
|
100 |
+
state_dict = model.module.state_dict()
|
101 |
+
else:
|
102 |
+
state_dict = model.state_dict()
|
103 |
+
new_state_dict= {}
|
104 |
+
for k, v in state_dict.items():
|
105 |
+
try:
|
106 |
+
new_state_dict[k] = saved_state_dict[k]
|
107 |
+
except:
|
108 |
+
logger.info("%s is not in the checkpoint" % k)
|
109 |
+
new_state_dict[k] = v
|
110 |
+
if hasattr(model, 'module'):
|
111 |
+
model.module.load_state_dict(new_state_dict)
|
112 |
+
else:
|
113 |
+
model.load_state_dict(new_state_dict)
|
114 |
+
logger.info("Loaded checkpoint '{}' (iteration {})" .format(
|
115 |
+
checkpoint_path, iteration))
|
116 |
+
return model, optimizer, learning_rate, iteration
|
117 |
+
|
118 |
+
|
119 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
120 |
+
# ckptname = checkpoint_path.split(os.sep)[-1]
|
121 |
+
# newest_step = int(ckptname.split(".")[0].split("_")[1])
|
122 |
+
# val_steps = 2000
|
123 |
+
# last_ckptname = checkpoint_path.replace(str(newest_step), str(newest_step - val_steps*3))
|
124 |
+
# if newest_step >= val_steps*3:
|
125 |
+
# os.system(f"rm {last_ckptname}")
|
126 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
127 |
+
iteration, checkpoint_path))
|
128 |
+
if hasattr(model, 'module'):
|
129 |
+
state_dict = model.module.state_dict()
|
130 |
+
else:
|
131 |
+
state_dict = model.state_dict()
|
132 |
+
torch.save({'model': state_dict,
|
133 |
+
'iteration': iteration,
|
134 |
+
'optimizer': optimizer.state_dict(),
|
135 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
136 |
+
|
137 |
+
|
138 |
+
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
139 |
+
for k, v in scalars.items():
|
140 |
+
writer.add_scalar(k, v, global_step)
|
141 |
+
for k, v in histograms.items():
|
142 |
+
writer.add_histogram(k, v, global_step)
|
143 |
+
for k, v in images.items():
|
144 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
145 |
+
for k, v in audios.items():
|
146 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
147 |
+
|
148 |
+
|
149 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
150 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
151 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
152 |
+
x = f_list[-1]
|
153 |
+
print(x)
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
158 |
+
global MATPLOTLIB_FLAG
|
159 |
+
if not MATPLOTLIB_FLAG:
|
160 |
+
import matplotlib
|
161 |
+
matplotlib.use("Agg")
|
162 |
+
MATPLOTLIB_FLAG = True
|
163 |
+
mpl_logger = logging.getLogger('matplotlib')
|
164 |
+
mpl_logger.setLevel(logging.WARNING)
|
165 |
+
import matplotlib.pylab as plt
|
166 |
+
import numpy as np
|
167 |
+
|
168 |
+
fig, ax = plt.subplots(figsize=(10,2))
|
169 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
170 |
+
interpolation='none')
|
171 |
+
plt.colorbar(im, ax=ax)
|
172 |
+
plt.xlabel("Frames")
|
173 |
+
plt.ylabel("Channels")
|
174 |
+
plt.tight_layout()
|
175 |
+
|
176 |
+
fig.canvas.draw()
|
177 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
178 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
179 |
+
plt.close()
|
180 |
+
return data
|
181 |
+
|
182 |
+
|
183 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
184 |
+
global MATPLOTLIB_FLAG
|
185 |
+
if not MATPLOTLIB_FLAG:
|
186 |
+
import matplotlib
|
187 |
+
matplotlib.use("Agg")
|
188 |
+
MATPLOTLIB_FLAG = True
|
189 |
+
mpl_logger = logging.getLogger('matplotlib')
|
190 |
+
mpl_logger.setLevel(logging.WARNING)
|
191 |
+
import matplotlib.pylab as plt
|
192 |
+
import numpy as np
|
193 |
+
|
194 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
195 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
196 |
+
interpolation='none')
|
197 |
+
fig.colorbar(im, ax=ax)
|
198 |
+
xlabel = 'Decoder timestep'
|
199 |
+
if info is not None:
|
200 |
+
xlabel += '\n\n' + info
|
201 |
+
plt.xlabel(xlabel)
|
202 |
+
plt.ylabel('Encoder timestep')
|
203 |
+
plt.tight_layout()
|
204 |
+
|
205 |
+
fig.canvas.draw()
|
206 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
207 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
208 |
+
plt.close()
|
209 |
+
return data
|
210 |
+
|
211 |
+
|
212 |
+
def load_wav_to_torch(full_path):
|
213 |
+
sampling_rate, data = read(full_path)
|
214 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
215 |
+
|
216 |
+
|
217 |
+
def load_filepaths_and_text(filename, split="|"):
|
218 |
+
with open(filename, encoding='utf-8') as f:
|
219 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
220 |
+
return filepaths_and_text
|
221 |
+
|
222 |
+
|
223 |
+
def get_hparams(init=True):
|
224 |
+
parser = argparse.ArgumentParser()
|
225 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
226 |
+
help='JSON file for configuration')
|
227 |
+
parser.add_argument('-m', '--model', type=str, required=True,
|
228 |
+
help='Model name')
|
229 |
+
|
230 |
+
args = parser.parse_args()
|
231 |
+
model_dir = os.path.join("./logs", args.model)
|
232 |
+
|
233 |
+
if not os.path.exists(model_dir):
|
234 |
+
os.makedirs(model_dir)
|
235 |
+
|
236 |
+
config_path = args.config
|
237 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
238 |
+
if init:
|
239 |
+
with open(config_path, "r") as f:
|
240 |
+
data = f.read()
|
241 |
+
with open(config_save_path, "w") as f:
|
242 |
+
f.write(data)
|
243 |
+
else:
|
244 |
+
with open(config_save_path, "r") as f:
|
245 |
+
data = f.read()
|
246 |
+
config = json.loads(data)
|
247 |
+
|
248 |
+
hparams = HParams(**config)
|
249 |
+
hparams.model_dir = model_dir
|
250 |
+
return hparams
|
251 |
+
|
252 |
+
|
253 |
+
def get_hparams_from_dir(model_dir):
|
254 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
255 |
+
with open(config_save_path, "r") as f:
|
256 |
+
data = f.read()
|
257 |
+
config = json.loads(data)
|
258 |
+
|
259 |
+
hparams =HParams(**config)
|
260 |
+
hparams.model_dir = model_dir
|
261 |
+
return hparams
|
262 |
+
|
263 |
+
|
264 |
+
def get_hparams_from_file(config_path):
|
265 |
+
with open(config_path, "r") as f:
|
266 |
+
data = f.read()
|
267 |
+
config = json.loads(data)
|
268 |
+
|
269 |
+
hparams =HParams(**config)
|
270 |
+
return hparams
|
271 |
+
|
272 |
+
|
273 |
+
def check_git_hash(model_dir):
|
274 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
275 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
276 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
277 |
+
source_dir
|
278 |
+
))
|
279 |
+
return
|
280 |
+
|
281 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
282 |
+
|
283 |
+
path = os.path.join(model_dir, "githash")
|
284 |
+
if os.path.exists(path):
|
285 |
+
saved_hash = open(path).read()
|
286 |
+
if saved_hash != cur_hash:
|
287 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
288 |
+
saved_hash[:8], cur_hash[:8]))
|
289 |
+
else:
|
290 |
+
open(path, "w").write(cur_hash)
|
291 |
+
|
292 |
+
|
293 |
+
def get_logger(model_dir, filename="train.log"):
|
294 |
+
global logger
|
295 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
296 |
+
logger.setLevel(logging.DEBUG)
|
297 |
+
|
298 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
299 |
+
if not os.path.exists(model_dir):
|
300 |
+
os.makedirs(model_dir)
|
301 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
302 |
+
h.setLevel(logging.DEBUG)
|
303 |
+
h.setFormatter(formatter)
|
304 |
+
logger.addHandler(h)
|
305 |
+
return logger
|
306 |
+
|
307 |
+
|
308 |
+
class HParams():
|
309 |
+
def __init__(self, **kwargs):
|
310 |
+
for k, v in kwargs.items():
|
311 |
+
if type(v) == dict:
|
312 |
+
v = HParams(**v)
|
313 |
+
self[k] = v
|
314 |
+
|
315 |
+
def keys(self):
|
316 |
+
return self.__dict__.keys()
|
317 |
+
|
318 |
+
def items(self):
|
319 |
+
return self.__dict__.items()
|
320 |
+
|
321 |
+
def values(self):
|
322 |
+
return self.__dict__.values()
|
323 |
+
|
324 |
+
def __len__(self):
|
325 |
+
return len(self.__dict__)
|
326 |
+
|
327 |
+
def __getitem__(self, key):
|
328 |
+
return getattr(self, key)
|
329 |
+
|
330 |
+
def __setitem__(self, key, value):
|
331 |
+
return setattr(self, key, value)
|
332 |
+
|
333 |
+
def __contains__(self, key):
|
334 |
+
return key in self.__dict__
|
335 |
+
|
336 |
+
def __repr__(self):
|
337 |
+
return self.__dict__.__repr__()
|
338 |
+
|
vdecoder/__init__.py
ADDED
File without changes
|
vdecoder/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (129 Bytes). View file
|
|
vdecoder/hifigan/__pycache__/env.cpython-310.pyc
ADDED
Binary file (802 Bytes). View file
|
|
vdecoder/hifigan/__pycache__/models.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
vdecoder/hifigan/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
vdecoder/hifigan/env.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
|
4 |
+
|
5 |
+
class AttrDict(dict):
|
6 |
+
def __init__(self, *args, **kwargs):
|
7 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
8 |
+
self.__dict__ = self
|
9 |
+
|
10 |
+
|
11 |
+
def build_env(config, config_name, path):
|
12 |
+
t_path = os.path.join(path, config_name)
|
13 |
+
if config != t_path:
|
14 |
+
os.makedirs(path, exist_ok=True)
|
15 |
+
shutil.copyfile(config, os.path.join(path, config_name))
|
vdecoder/hifigan/models.py
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from .env import AttrDict
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
9 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
10 |
+
from .utils import init_weights, get_padding
|
11 |
+
|
12 |
+
LRELU_SLOPE = 0.1
|
13 |
+
|
14 |
+
|
15 |
+
def load_model(model_path, device='cuda'):
|
16 |
+
config_file = os.path.join(os.path.split(model_path)[0], 'config.json')
|
17 |
+
with open(config_file) as f:
|
18 |
+
data = f.read()
|
19 |
+
|
20 |
+
global h
|
21 |
+
json_config = json.loads(data)
|
22 |
+
h = AttrDict(json_config)
|
23 |
+
|
24 |
+
generator = Generator(h).to(device)
|
25 |
+
|
26 |
+
cp_dict = torch.load(model_path)
|
27 |
+
generator.load_state_dict(cp_dict['generator'])
|
28 |
+
generator.eval()
|
29 |
+
generator.remove_weight_norm()
|
30 |
+
del cp_dict
|
31 |
+
return generator, h
|
32 |
+
|
33 |
+
|
34 |
+
class ResBlock1(torch.nn.Module):
|
35 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
36 |
+
super(ResBlock1, self).__init__()
|
37 |
+
self.h = h
|
38 |
+
self.convs1 = nn.ModuleList([
|
39 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
40 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
41 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
42 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
43 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
44 |
+
padding=get_padding(kernel_size, dilation[2])))
|
45 |
+
])
|
46 |
+
self.convs1.apply(init_weights)
|
47 |
+
|
48 |
+
self.convs2 = nn.ModuleList([
|
49 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
50 |
+
padding=get_padding(kernel_size, 1))),
|
51 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
52 |
+
padding=get_padding(kernel_size, 1))),
|
53 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
54 |
+
padding=get_padding(kernel_size, 1)))
|
55 |
+
])
|
56 |
+
self.convs2.apply(init_weights)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
60 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
61 |
+
xt = c1(xt)
|
62 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
63 |
+
xt = c2(xt)
|
64 |
+
x = xt + x
|
65 |
+
return x
|
66 |
+
|
67 |
+
def remove_weight_norm(self):
|
68 |
+
for l in self.convs1:
|
69 |
+
remove_weight_norm(l)
|
70 |
+
for l in self.convs2:
|
71 |
+
remove_weight_norm(l)
|
72 |
+
|
73 |
+
|
74 |
+
class ResBlock2(torch.nn.Module):
|
75 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
76 |
+
super(ResBlock2, self).__init__()
|
77 |
+
self.h = h
|
78 |
+
self.convs = nn.ModuleList([
|
79 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
80 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
81 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
82 |
+
padding=get_padding(kernel_size, dilation[1])))
|
83 |
+
])
|
84 |
+
self.convs.apply(init_weights)
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
for c in self.convs:
|
88 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
89 |
+
xt = c(xt)
|
90 |
+
x = xt + x
|
91 |
+
return x
|
92 |
+
|
93 |
+
def remove_weight_norm(self):
|
94 |
+
for l in self.convs:
|
95 |
+
remove_weight_norm(l)
|
96 |
+
|
97 |
+
|
98 |
+
class SineGen(torch.nn.Module):
|
99 |
+
""" Definition of sine generator
|
100 |
+
SineGen(samp_rate, harmonic_num = 0,
|
101 |
+
sine_amp = 0.1, noise_std = 0.003,
|
102 |
+
voiced_threshold = 0,
|
103 |
+
flag_for_pulse=False)
|
104 |
+
samp_rate: sampling rate in Hz
|
105 |
+
harmonic_num: number of harmonic overtones (default 0)
|
106 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
107 |
+
noise_std: std of Gaussian noise (default 0.003)
|
108 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
109 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
110 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
111 |
+
segment is always sin(np.pi) or cos(0)
|
112 |
+
"""
|
113 |
+
|
114 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
115 |
+
sine_amp=0.1, noise_std=0.003,
|
116 |
+
voiced_threshold=0,
|
117 |
+
flag_for_pulse=False):
|
118 |
+
super(SineGen, self).__init__()
|
119 |
+
self.sine_amp = sine_amp
|
120 |
+
self.noise_std = noise_std
|
121 |
+
self.harmonic_num = harmonic_num
|
122 |
+
self.dim = self.harmonic_num + 1
|
123 |
+
self.sampling_rate = samp_rate
|
124 |
+
self.voiced_threshold = voiced_threshold
|
125 |
+
self.flag_for_pulse = flag_for_pulse
|
126 |
+
|
127 |
+
def _f02uv(self, f0):
|
128 |
+
# generate uv signal
|
129 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
130 |
+
return uv
|
131 |
+
|
132 |
+
def _f02sine(self, f0_values):
|
133 |
+
""" f0_values: (batchsize, length, dim)
|
134 |
+
where dim indicates fundamental tone and overtones
|
135 |
+
"""
|
136 |
+
# convert to F0 in rad. The interger part n can be ignored
|
137 |
+
# because 2 * np.pi * n doesn't affect phase
|
138 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
139 |
+
|
140 |
+
# initial phase noise (no noise for fundamental component)
|
141 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
142 |
+
device=f0_values.device)
|
143 |
+
rand_ini[:, 0] = 0
|
144 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
145 |
+
|
146 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
147 |
+
if not self.flag_for_pulse:
|
148 |
+
# for normal case
|
149 |
+
|
150 |
+
# To prevent torch.cumsum numerical overflow,
|
151 |
+
# it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
152 |
+
# Buffer tmp_over_one_idx indicates the time step to add -1.
|
153 |
+
# This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
154 |
+
tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
155 |
+
tmp_over_one_idx = (torch.diff(tmp_over_one, dim=1)) < 0
|
156 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
157 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
158 |
+
|
159 |
+
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1)
|
160 |
+
* 2 * np.pi)
|
161 |
+
else:
|
162 |
+
# If necessary, make sure that the first time step of every
|
163 |
+
# voiced segments is sin(pi) or cos(0)
|
164 |
+
# This is used for pulse-train generation
|
165 |
+
|
166 |
+
# identify the last time step in unvoiced segments
|
167 |
+
uv = self._f02uv(f0_values)
|
168 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
169 |
+
uv_1[:, -1, :] = 1
|
170 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
171 |
+
|
172 |
+
# get the instantanouse phase
|
173 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
174 |
+
# different batch needs to be processed differently
|
175 |
+
for idx in range(f0_values.shape[0]):
|
176 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
177 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
178 |
+
# stores the accumulation of i.phase within
|
179 |
+
# each voiced segments
|
180 |
+
tmp_cumsum[idx, :, :] = 0
|
181 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
182 |
+
|
183 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
184 |
+
# within the previous voiced segment.
|
185 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
186 |
+
|
187 |
+
# get the sines
|
188 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
189 |
+
return sines
|
190 |
+
|
191 |
+
def forward(self, f0):
|
192 |
+
""" sine_tensor, uv = forward(f0)
|
193 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
194 |
+
f0 for unvoiced steps should be 0
|
195 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
196 |
+
output uv: tensor(batchsize=1, length, 1)
|
197 |
+
"""
|
198 |
+
with torch.no_grad():
|
199 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
200 |
+
device=f0.device)
|
201 |
+
# fundamental component
|
202 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
203 |
+
|
204 |
+
# generate sine waveforms
|
205 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
206 |
+
|
207 |
+
# generate uv signal
|
208 |
+
# uv = torch.ones(f0.shape)
|
209 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
210 |
+
uv = self._f02uv(f0)
|
211 |
+
|
212 |
+
# noise: for unvoiced should be similar to sine_amp
|
213 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
214 |
+
# . for voiced regions is self.noise_std
|
215 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
216 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
217 |
+
|
218 |
+
# first: set the unvoiced part to 0 by uv
|
219 |
+
# then: additive noise
|
220 |
+
sine_waves = sine_waves * uv + noise
|
221 |
+
return sine_waves, uv, noise
|
222 |
+
|
223 |
+
|
224 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
225 |
+
""" SourceModule for hn-nsf
|
226 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
227 |
+
add_noise_std=0.003, voiced_threshod=0)
|
228 |
+
sampling_rate: sampling_rate in Hz
|
229 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
230 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
231 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
232 |
+
note that amplitude of noise in unvoiced is decided
|
233 |
+
by sine_amp
|
234 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
235 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
236 |
+
F0_sampled (batchsize, length, 1)
|
237 |
+
Sine_source (batchsize, length, 1)
|
238 |
+
noise_source (batchsize, length 1)
|
239 |
+
uv (batchsize, length, 1)
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
243 |
+
add_noise_std=0.003, voiced_threshod=0):
|
244 |
+
super(SourceModuleHnNSF, self).__init__()
|
245 |
+
|
246 |
+
self.sine_amp = sine_amp
|
247 |
+
self.noise_std = add_noise_std
|
248 |
+
|
249 |
+
# to produce sine waveforms
|
250 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
251 |
+
sine_amp, add_noise_std, voiced_threshod)
|
252 |
+
|
253 |
+
# to merge source harmonics into a single excitation
|
254 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
255 |
+
self.l_tanh = torch.nn.Tanh()
|
256 |
+
|
257 |
+
def forward(self, x):
|
258 |
+
"""
|
259 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
260 |
+
F0_sampled (batchsize, length, 1)
|
261 |
+
Sine_source (batchsize, length, 1)
|
262 |
+
noise_source (batchsize, length 1)
|
263 |
+
"""
|
264 |
+
# source for harmonic branch
|
265 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
266 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
267 |
+
|
268 |
+
# source for noise branch, in the same shape as uv
|
269 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
270 |
+
return sine_merge, noise, uv
|
271 |
+
|
272 |
+
|
273 |
+
class Generator(torch.nn.Module):
|
274 |
+
def __init__(self, h):
|
275 |
+
super(Generator, self).__init__()
|
276 |
+
self.h = h
|
277 |
+
|
278 |
+
self.num_kernels = len(h["resblock_kernel_sizes"])
|
279 |
+
self.num_upsamples = len(h["upsample_rates"])
|
280 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"]))
|
281 |
+
self.m_source = SourceModuleHnNSF(
|
282 |
+
sampling_rate=h["sampling_rate"],
|
283 |
+
harmonic_num=8)
|
284 |
+
self.noise_convs = nn.ModuleList()
|
285 |
+
self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3))
|
286 |
+
resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2
|
287 |
+
self.ups = nn.ModuleList()
|
288 |
+
for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])):
|
289 |
+
c_cur = h["upsample_initial_channel"] // (2 ** (i + 1))
|
290 |
+
self.ups.append(weight_norm(
|
291 |
+
ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)),
|
292 |
+
k, u, padding=(k - u) // 2)))
|
293 |
+
if i + 1 < len(h["upsample_rates"]): #
|
294 |
+
stride_f0 = np.prod(h["upsample_rates"][i + 1:])
|
295 |
+
self.noise_convs.append(Conv1d(
|
296 |
+
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
297 |
+
else:
|
298 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
299 |
+
self.resblocks = nn.ModuleList()
|
300 |
+
for i in range(len(self.ups)):
|
301 |
+
ch = h["upsample_initial_channel"] // (2 ** (i + 1))
|
302 |
+
for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])):
|
303 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
304 |
+
|
305 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
306 |
+
self.ups.apply(init_weights)
|
307 |
+
self.conv_post.apply(init_weights)
|
308 |
+
self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1)
|
309 |
+
|
310 |
+
def forward(self, x, f0, g=None):
|
311 |
+
# print(1,x.shape,f0.shape,f0[:, None].shape)
|
312 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
313 |
+
# print(2,f0.shape)
|
314 |
+
har_source, noi_source, uv = self.m_source(f0)
|
315 |
+
har_source = har_source.transpose(1, 2)
|
316 |
+
x = self.conv_pre(x)
|
317 |
+
x = x + self.cond(g)
|
318 |
+
# print(124,x.shape,har_source.shape)
|
319 |
+
for i in range(self.num_upsamples):
|
320 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
321 |
+
# print(3,x.shape)
|
322 |
+
x = self.ups[i](x)
|
323 |
+
x_source = self.noise_convs[i](har_source)
|
324 |
+
# print(4,x_source.shape,har_source.shape,x.shape)
|
325 |
+
x = x + x_source
|
326 |
+
xs = None
|
327 |
+
for j in range(self.num_kernels):
|
328 |
+
if xs is None:
|
329 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
330 |
+
else:
|
331 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
332 |
+
x = xs / self.num_kernels
|
333 |
+
x = F.leaky_relu(x)
|
334 |
+
x = self.conv_post(x)
|
335 |
+
x = torch.tanh(x)
|
336 |
+
|
337 |
+
return x
|
338 |
+
|
339 |
+
def remove_weight_norm(self):
|
340 |
+
print('Removing weight norm...')
|
341 |
+
for l in self.ups:
|
342 |
+
remove_weight_norm(l)
|
343 |
+
for l in self.resblocks:
|
344 |
+
l.remove_weight_norm()
|
345 |
+
remove_weight_norm(self.conv_pre)
|
346 |
+
remove_weight_norm(self.conv_post)
|
347 |
+
|
348 |
+
|
349 |
+
class DiscriminatorP(torch.nn.Module):
|
350 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
351 |
+
super(DiscriminatorP, self).__init__()
|
352 |
+
self.period = period
|
353 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
354 |
+
self.convs = nn.ModuleList([
|
355 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
356 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
357 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
358 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
359 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
360 |
+
])
|
361 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
362 |
+
|
363 |
+
def forward(self, x):
|
364 |
+
fmap = []
|
365 |
+
|
366 |
+
# 1d to 2d
|
367 |
+
b, c, t = x.shape
|
368 |
+
if t % self.period != 0: # pad first
|
369 |
+
n_pad = self.period - (t % self.period)
|
370 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
371 |
+
t = t + n_pad
|
372 |
+
x = x.view(b, c, t // self.period, self.period)
|
373 |
+
|
374 |
+
for l in self.convs:
|
375 |
+
x = l(x)
|
376 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
377 |
+
fmap.append(x)
|
378 |
+
x = self.conv_post(x)
|
379 |
+
fmap.append(x)
|
380 |
+
x = torch.flatten(x, 1, -1)
|
381 |
+
|
382 |
+
return x, fmap
|
383 |
+
|
384 |
+
|
385 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
386 |
+
def __init__(self, periods=None):
|
387 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
388 |
+
self.periods = periods if periods is not None else [2, 3, 5, 7, 11]
|
389 |
+
self.discriminators = nn.ModuleList()
|
390 |
+
for period in self.periods:
|
391 |
+
self.discriminators.append(DiscriminatorP(period))
|
392 |
+
|
393 |
+
def forward(self, y, y_hat):
|
394 |
+
y_d_rs = []
|
395 |
+
y_d_gs = []
|
396 |
+
fmap_rs = []
|
397 |
+
fmap_gs = []
|
398 |
+
for i, d in enumerate(self.discriminators):
|
399 |
+
y_d_r, fmap_r = d(y)
|
400 |
+
y_d_g, fmap_g = d(y_hat)
|
401 |
+
y_d_rs.append(y_d_r)
|
402 |
+
fmap_rs.append(fmap_r)
|
403 |
+
y_d_gs.append(y_d_g)
|
404 |
+
fmap_gs.append(fmap_g)
|
405 |
+
|
406 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
407 |
+
|
408 |
+
|
409 |
+
class DiscriminatorS(torch.nn.Module):
|
410 |
+
def __init__(self, use_spectral_norm=False):
|
411 |
+
super(DiscriminatorS, self).__init__()
|
412 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
413 |
+
self.convs = nn.ModuleList([
|
414 |
+
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
415 |
+
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
416 |
+
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
417 |
+
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
418 |
+
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
419 |
+
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
420 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
421 |
+
])
|
422 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
423 |
+
|
424 |
+
def forward(self, x):
|
425 |
+
fmap = []
|
426 |
+
for l in self.convs:
|
427 |
+
x = l(x)
|
428 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
429 |
+
fmap.append(x)
|
430 |
+
x = self.conv_post(x)
|
431 |
+
fmap.append(x)
|
432 |
+
x = torch.flatten(x, 1, -1)
|
433 |
+
|
434 |
+
return x, fmap
|
435 |
+
|
436 |
+
|
437 |
+
class MultiScaleDiscriminator(torch.nn.Module):
|
438 |
+
def __init__(self):
|
439 |
+
super(MultiScaleDiscriminator, self).__init__()
|
440 |
+
self.discriminators = nn.ModuleList([
|
441 |
+
DiscriminatorS(use_spectral_norm=True),
|
442 |
+
DiscriminatorS(),
|
443 |
+
DiscriminatorS(),
|
444 |
+
])
|
445 |
+
self.meanpools = nn.ModuleList([
|
446 |
+
AvgPool1d(4, 2, padding=2),
|
447 |
+
AvgPool1d(4, 2, padding=2)
|
448 |
+
])
|
449 |
+
|
450 |
+
def forward(self, y, y_hat):
|
451 |
+
y_d_rs = []
|
452 |
+
y_d_gs = []
|
453 |
+
fmap_rs = []
|
454 |
+
fmap_gs = []
|
455 |
+
for i, d in enumerate(self.discriminators):
|
456 |
+
if i != 0:
|
457 |
+
y = self.meanpools[i - 1](y)
|
458 |
+
y_hat = self.meanpools[i - 1](y_hat)
|
459 |
+
y_d_r, fmap_r = d(y)
|
460 |
+
y_d_g, fmap_g = d(y_hat)
|
461 |
+
y_d_rs.append(y_d_r)
|
462 |
+
fmap_rs.append(fmap_r)
|
463 |
+
y_d_gs.append(y_d_g)
|
464 |
+
fmap_gs.append(fmap_g)
|
465 |
+
|
466 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
467 |
+
|
468 |
+
|
469 |
+
def feature_loss(fmap_r, fmap_g):
|
470 |
+
loss = 0
|
471 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
472 |
+
for rl, gl in zip(dr, dg):
|
473 |
+
loss += torch.mean(torch.abs(rl - gl))
|
474 |
+
|
475 |
+
return loss * 2
|
476 |
+
|
477 |
+
|
478 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
479 |
+
loss = 0
|
480 |
+
r_losses = []
|
481 |
+
g_losses = []
|
482 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
483 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
484 |
+
g_loss = torch.mean(dg ** 2)
|
485 |
+
loss += (r_loss + g_loss)
|
486 |
+
r_losses.append(r_loss.item())
|
487 |
+
g_losses.append(g_loss.item())
|
488 |
+
|
489 |
+
return loss, r_losses, g_losses
|
490 |
+
|
491 |
+
|
492 |
+
def generator_loss(disc_outputs):
|
493 |
+
loss = 0
|
494 |
+
gen_losses = []
|
495 |
+
for dg in disc_outputs:
|
496 |
+
l = torch.mean((1 - dg) ** 2)
|
497 |
+
gen_losses.append(l)
|
498 |
+
loss += l
|
499 |
+
|
500 |
+
return loss, gen_losses
|
vdecoder/hifigan/nvSTFT.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
os.environ["LRU_CACHE_CAPACITY"] = "3"
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
import numpy as np
|
8 |
+
import librosa
|
9 |
+
from librosa.util import normalize
|
10 |
+
from librosa.filters import mel as librosa_mel_fn
|
11 |
+
from scipy.io.wavfile import read
|
12 |
+
import soundfile as sf
|
13 |
+
|
14 |
+
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
|
15 |
+
sampling_rate = None
|
16 |
+
try:
|
17 |
+
data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
|
18 |
+
except Exception as ex:
|
19 |
+
print(f"'{full_path}' failed to load.\nException:")
|
20 |
+
print(ex)
|
21 |
+
if return_empty_on_exception:
|
22 |
+
return [], sampling_rate or target_sr or 32000
|
23 |
+
else:
|
24 |
+
raise Exception(ex)
|
25 |
+
|
26 |
+
if len(data.shape) > 1:
|
27 |
+
data = data[:, 0]
|
28 |
+
assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
|
29 |
+
|
30 |
+
if np.issubdtype(data.dtype, np.integer): # if audio data is type int
|
31 |
+
max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
|
32 |
+
else: # if audio data is type fp32
|
33 |
+
max_mag = max(np.amax(data), -np.amin(data))
|
34 |
+
max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
|
35 |
+
|
36 |
+
data = torch.FloatTensor(data.astype(np.float32))/max_mag
|
37 |
+
|
38 |
+
if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
|
39 |
+
return [], sampling_rate or target_sr or 32000
|
40 |
+
if target_sr is not None and sampling_rate != target_sr:
|
41 |
+
data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
|
42 |
+
sampling_rate = target_sr
|
43 |
+
|
44 |
+
return data, sampling_rate
|
45 |
+
|
46 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
47 |
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
48 |
+
|
49 |
+
def dynamic_range_decompression(x, C=1):
|
50 |
+
return np.exp(x) / C
|
51 |
+
|
52 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
53 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
54 |
+
|
55 |
+
def dynamic_range_decompression_torch(x, C=1):
|
56 |
+
return torch.exp(x) / C
|
57 |
+
|
58 |
+
class STFT():
|
59 |
+
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
|
60 |
+
self.target_sr = sr
|
61 |
+
|
62 |
+
self.n_mels = n_mels
|
63 |
+
self.n_fft = n_fft
|
64 |
+
self.win_size = win_size
|
65 |
+
self.hop_length = hop_length
|
66 |
+
self.fmin = fmin
|
67 |
+
self.fmax = fmax
|
68 |
+
self.clip_val = clip_val
|
69 |
+
self.mel_basis = {}
|
70 |
+
self.hann_window = {}
|
71 |
+
|
72 |
+
def get_mel(self, y, center=False):
|
73 |
+
sampling_rate = self.target_sr
|
74 |
+
n_mels = self.n_mels
|
75 |
+
n_fft = self.n_fft
|
76 |
+
win_size = self.win_size
|
77 |
+
hop_length = self.hop_length
|
78 |
+
fmin = self.fmin
|
79 |
+
fmax = self.fmax
|
80 |
+
clip_val = self.clip_val
|
81 |
+
|
82 |
+
if torch.min(y) < -1.:
|
83 |
+
print('min value is ', torch.min(y))
|
84 |
+
if torch.max(y) > 1.:
|
85 |
+
print('max value is ', torch.max(y))
|
86 |
+
|
87 |
+
if fmax not in self.mel_basis:
|
88 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
89 |
+
self.mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
90 |
+
self.hann_window[str(y.device)] = torch.hann_window(self.win_size).to(y.device)
|
91 |
+
|
92 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_length)/2), int((n_fft-hop_length)/2)), mode='reflect')
|
93 |
+
y = y.squeeze(1)
|
94 |
+
|
95 |
+
spec = torch.stft(y, n_fft, hop_length=hop_length, win_length=win_size, window=self.hann_window[str(y.device)],
|
96 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
97 |
+
# print(111,spec)
|
98 |
+
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
99 |
+
# print(222,spec)
|
100 |
+
spec = torch.matmul(self.mel_basis[str(fmax)+'_'+str(y.device)], spec)
|
101 |
+
# print(333,spec)
|
102 |
+
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
|
103 |
+
# print(444,spec)
|
104 |
+
return spec
|
105 |
+
|
106 |
+
def __call__(self, audiopath):
|
107 |
+
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
|
108 |
+
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
|
109 |
+
return spect
|
110 |
+
|
111 |
+
stft = STFT()
|
vdecoder/hifigan/utils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
import matplotlib
|
4 |
+
import torch
|
5 |
+
from torch.nn.utils import weight_norm
|
6 |
+
matplotlib.use("Agg")
|
7 |
+
import matplotlib.pylab as plt
|
8 |
+
|
9 |
+
|
10 |
+
def plot_spectrogram(spectrogram):
|
11 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
12 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
13 |
+
interpolation='none')
|
14 |
+
plt.colorbar(im, ax=ax)
|
15 |
+
|
16 |
+
fig.canvas.draw()
|
17 |
+
plt.close()
|
18 |
+
|
19 |
+
return fig
|
20 |
+
|
21 |
+
|
22 |
+
def init_weights(m, mean=0.0, std=0.01):
|
23 |
+
classname = m.__class__.__name__
|
24 |
+
if classname.find("Conv") != -1:
|
25 |
+
m.weight.data.normal_(mean, std)
|
26 |
+
|
27 |
+
|
28 |
+
def apply_weight_norm(m):
|
29 |
+
classname = m.__class__.__name__
|
30 |
+
if classname.find("Conv") != -1:
|
31 |
+
weight_norm(m)
|
32 |
+
|
33 |
+
|
34 |
+
def get_padding(kernel_size, dilation=1):
|
35 |
+
return int((kernel_size*dilation - dilation)/2)
|
36 |
+
|
37 |
+
|
38 |
+
def load_checkpoint(filepath, device):
|
39 |
+
assert os.path.isfile(filepath)
|
40 |
+
print("Loading '{}'".format(filepath))
|
41 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
42 |
+
print("Complete.")
|
43 |
+
return checkpoint_dict
|
44 |
+
|
45 |
+
|
46 |
+
def save_checkpoint(filepath, obj):
|
47 |
+
print("Saving checkpoint to {}".format(filepath))
|
48 |
+
torch.save(obj, filepath)
|
49 |
+
print("Complete.")
|
50 |
+
|
51 |
+
|
52 |
+
def del_old_checkpoints(cp_dir, prefix, n_models=2):
|
53 |
+
pattern = os.path.join(cp_dir, prefix + '????????')
|
54 |
+
cp_list = glob.glob(pattern) # get checkpoint paths
|
55 |
+
cp_list = sorted(cp_list)# sort by iter
|
56 |
+
if len(cp_list) > n_models: # if more than n_models models are found
|
57 |
+
for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models
|
58 |
+
open(cp, 'w').close()# empty file contents
|
59 |
+
os.unlink(cp)# delete file (move to trash when using Colab)
|
60 |
+
|
61 |
+
|
62 |
+
def scan_checkpoint(cp_dir, prefix):
|
63 |
+
pattern = os.path.join(cp_dir, prefix + '????????')
|
64 |
+
cp_list = glob.glob(pattern)
|
65 |
+
if len(cp_list) == 0:
|
66 |
+
return None
|
67 |
+
return sorted(cp_list)[-1]
|
68 |
+
|