Spaces:
Running
Running
import time | |
import numpy as np | |
import torch | |
import torchaudio | |
from scipy.ndimage import maximum_filter1d, uniform_filter1d | |
def timeit(func): | |
def run(*args, **kwargs): | |
t = time.time() | |
res = func(*args, **kwargs) | |
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t)) | |
return res | |
return run | |
# @timeit | |
def _window_maximum(arr, win_sz): | |
return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1] | |
# @timeit | |
def _window_rms(arr, win_sz): | |
filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2)) | |
return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1] | |
def level2db(levels, eps=1e-12): | |
return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1)) | |
def _apply_slice(audio, begin, end): | |
if len(audio.shape) > 1: | |
return audio[:, begin: end] | |
else: | |
return audio[begin: end] | |
class Slicer: | |
def __init__(self, | |
sr: int, | |
db_threshold: float = -40, | |
min_length: int = 5000, | |
win_l: int = 300, | |
win_s: int = 20, | |
max_silence_kept: int = 500): | |
self.db_threshold = db_threshold | |
self.min_samples = round(sr * min_length / 1000) | |
self.win_ln = round(sr * win_l / 1000) | |
self.win_sn = round(sr * win_s / 1000) | |
self.max_silence = round(sr * max_silence_kept / 1000) | |
if not self.min_samples >= self.win_ln >= self.win_sn: | |
raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s') | |
if not self.max_silence >= self.win_sn: | |
raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s') | |
def slice(self, audio): | |
samples = audio | |
if samples.shape[0] <= self.min_samples: | |
return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}} | |
# get absolute amplitudes | |
abs_amp = np.abs(samples - np.mean(samples)) | |
# calculate local maximum with large window | |
win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln)) | |
sil_tags = [] | |
left = right = 0 | |
while right < win_max_db.shape[0]: | |
if win_max_db[right] < self.db_threshold: | |
right += 1 | |
elif left == right: | |
left += 1 | |
right += 1 | |
else: | |
if left == 0: | |
split_loc_l = left | |
else: | |
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2) | |
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn)) | |
split_win_l = left + np.argmin(rms_db_left) | |
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn]) | |
if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[ | |
0] - 1: | |
right += 1 | |
left = right | |
continue | |
if right == win_max_db.shape[0] - 1: | |
split_loc_r = right + self.win_ln | |
else: | |
sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2) | |
rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln], | |
win_sz=self.win_sn)) | |
split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right) | |
split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn]) | |
sil_tags.append((split_loc_l, split_loc_r)) | |
right += 1 | |
left = right | |
if left != right: | |
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2) | |
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn)) | |
split_win_l = left + np.argmin(rms_db_left) | |
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn]) | |
sil_tags.append((split_loc_l, samples.shape[0])) | |
if len(sil_tags) == 0: | |
return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}} | |
else: | |
chunks = [] | |
# 第一段静音并非从头开始,补上有声片段 | |
if sil_tags[0][0]: | |
chunks.append({"slice": False, "split_time": f"0,{sil_tags[0][0]}"}) | |
for i in range(0, len(sil_tags)): | |
# 标识有声片段(跳过第一段) | |
if i: | |
chunks.append({"slice": False, "split_time": f"{sil_tags[i - 1][1]},{sil_tags[i][0]}"}) | |
# 标识所有静音片段 | |
chunks.append({"slice": True, "split_time": f"{sil_tags[i][0]},{sil_tags[i][1]}"}) | |
# 最后一段静音并非结尾,补上结尾片段 | |
if sil_tags[-1][1] != len(audio): | |
chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1]},{len(audio)}"}) | |
chunk_dict = {} | |
for i in range(len(chunks)): | |
chunk_dict[str(i)] = chunks[i] | |
return chunk_dict | |
def cut(audio_path, db_thresh=-30, min_len=5000, win_l=300, win_s=20, max_sil_kept=500): | |
audio, sr = torchaudio.load(audio_path) | |
if len(audio.shape) == 2 and audio.shape[1] >= 2: | |
audio = torch.mean(audio, dim=0).unsqueeze(0) | |
audio = audio.cpu().numpy()[0] | |
slicer = Slicer( | |
sr=sr, | |
db_threshold=db_thresh, | |
min_length=min_len, | |
win_l=win_l, | |
win_s=win_s, | |
max_silence_kept=max_sil_kept | |
) | |
chunks = slicer.slice(audio) | |
return chunks | |
def chunks2audio(audio_path, chunks): | |
chunks = dict(chunks) | |
audio, sr = torchaudio.load(audio_path) | |
if len(audio.shape) == 2 and audio.shape[1] >= 2: | |
audio = torch.mean(audio, dim=0).unsqueeze(0) | |
audio = audio.cpu().numpy()[0] | |
result = [] | |
for k, v in chunks.items(): | |
tag = v["split_time"].split(",") | |
result.append((v["slice"], audio[int(tag[0]):int(tag[1])])) | |
return result, sr | |