Spaces:
Runtime error
Runtime error
| import math | |
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| from facenet_pytorch import InceptionResnetV1, MTCNN | |
| import tensorflow as tf | |
| import mediapipe as mp | |
| from fer import FER | |
| from sklearn.cluster import DBSCAN | |
| from sklearn.preprocessing import StandardScaler, MinMaxScaler | |
| import pandas as pd | |
| import matplotlib | |
| import matplotlib.pyplot as plt | |
| from matplotlib.patches import Rectangle | |
| from moviepy.editor import VideoFileClip | |
| from PIL import Image | |
| import gradio as gr | |
| import tempfile | |
| import shutil | |
| import copy | |
| import time | |
| matplotlib.rcParams['figure.dpi'] = 500 | |
| matplotlib.rcParams['savefig.dpi'] = 500 | |
| # Initialize models and other global variables | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80) | |
| model = InceptionResnetV1(pretrained='vggface2').eval().to(device) | |
| mp_face_mesh = mp.solutions.face_mesh | |
| face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5) | |
| emotion_detector = FER(mtcnn=False) | |
| def frame_to_timecode(frame_num, total_frames, duration): | |
| total_seconds = (frame_num / total_frames) * duration | |
| hours = int(total_seconds // 3600) | |
| minutes = int((total_seconds % 3600) // 60) | |
| seconds = int(total_seconds % 60) | |
| milliseconds = int((total_seconds - int(total_seconds)) * 1000) | |
| return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" | |
| def seconds_to_timecode(seconds): | |
| hours = int(seconds // 3600) | |
| minutes = int((seconds % 3600) // 60) | |
| seconds = int(seconds % 60) | |
| return f"{hours:02d}:{minutes:02d}:{seconds:02d}" | |
| def timecode_to_seconds(timecode): | |
| h, m, s = map(int, timecode.split(':')) | |
| return h * 3600 + m * 60 + s | |
| def get_face_embedding_and_emotion(face_img): | |
| face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 | |
| face_tensor = (face_tensor - 0.5) / 0.5 | |
| face_tensor = face_tensor.to(device) | |
| with torch.no_grad(): | |
| embedding = model(face_tensor) | |
| emotions = emotion_detector.detect_emotions(face_img) | |
| if emotions: | |
| emotion_dict = emotions[0]['emotions'] | |
| else: | |
| emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'sad', 'happy']} | |
| return embedding.cpu().numpy().flatten(), emotion_dict | |
| def alignFace(img): | |
| img_raw = img.copy() | |
| results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
| if not results.multi_face_landmarks: | |
| return None | |
| landmarks = results.multi_face_landmarks[0].landmark | |
| left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], | |
| [landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], | |
| [landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) | |
| right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], | |
| [landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], | |
| [landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) | |
| left_eye_center = left_eye.mean(axis=0).astype(np.int32) | |
| right_eye_center = right_eye.mean(axis=0).astype(np.int32) | |
| dY = right_eye_center[1] - left_eye_center[1] | |
| dX = right_eye_center[0] - left_eye_center[0] | |
| angle = np.degrees(np.arctan2(dY, dX)) | |
| desired_angle = 0 | |
| angle_diff = desired_angle - angle | |
| height, width = img_raw.shape[:2] | |
| center = (width // 2, height // 2) | |
| rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) | |
| new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) | |
| return new_img | |
| def extract_frames(video_path, output_folder, desired_fps, progress_callback=None): | |
| os.makedirs(output_folder, exist_ok=True) | |
| clip = VideoFileClip(video_path) | |
| original_fps = clip.fps | |
| duration = clip.duration | |
| total_frames = int(duration * original_fps) | |
| step = max(1, original_fps / desired_fps) | |
| total_frames_to_extract = int(total_frames / step) | |
| frame_count = 0 | |
| for t in np.arange(0, duration, step / original_fps): | |
| frame = clip.get_frame(t) | |
| img = Image.fromarray(frame) | |
| img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg")) | |
| frame_count += 1 | |
| if progress_callback: | |
| progress = min(100, (frame_count / total_frames_to_extract) * 100) | |
| progress_callback(progress, f"Extracting frame") | |
| if frame_count >= total_frames_to_extract: | |
| break | |
| clip.close() | |
| return frame_count, original_fps | |
| def is_frontal_face(landmarks, threshold=40): | |
| nose_tip = landmarks[4] | |
| left_chin = landmarks[234] | |
| right_chin = landmarks[454] | |
| nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y] | |
| nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y] | |
| dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1] | |
| magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2) | |
| magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2) | |
| cos_angle = dot_product / (magnitude_left * magnitude_right) | |
| angle = math.acos(cos_angle) | |
| angle_degrees = math.degrees(angle) | |
| return abs(180 - angle_degrees) < threshold | |
| def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size): | |
| embeddings_by_frame = {} | |
| emotions_by_frame = {} | |
| aligned_face_paths = [] | |
| frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')]) | |
| for i in range(0, len(frame_files), batch_size): | |
| batch_files = frame_files[i:i + batch_size] | |
| batch_frames = [] | |
| batch_nums = [] | |
| for frame_file in batch_files: | |
| frame_num = int(frame_file.split('_')[1].split('.')[0]) | |
| frame_path = os.path.join(frames_folder, frame_file) | |
| frame = cv2.imread(frame_path) | |
| if frame is not None: | |
| batch_frames.append(frame) | |
| batch_nums.append(frame_num) | |
| if batch_frames: | |
| batch_boxes, batch_probs = mtcnn.detect(batch_frames) | |
| for j, (frame, frame_num, boxes, probs) in enumerate( | |
| zip(batch_frames, batch_nums, batch_boxes, batch_probs)): | |
| if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99: | |
| x1, y1, x2, y2 = [int(b) for b in boxes[0]] | |
| face = frame[y1:y2, x1:x2] | |
| if face.size > 0: | |
| results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB)) | |
| if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark): | |
| aligned_face = alignFace(face) | |
| if aligned_face is not None: | |
| aligned_face_resized = cv2.resize(aligned_face, (160, 160)) | |
| output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
| cv2.imwrite(output_path, aligned_face_resized) | |
| aligned_face_paths.append(output_path) | |
| embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized) | |
| embeddings_by_frame[frame_num] = embedding | |
| emotions_by_frame[frame_num] = emotion | |
| progress((i + len(batch_files)) / len(frame_files), | |
| f"Processing frames {i + 1} to {min(i + len(batch_files), len(frame_files))} of {len(frame_files)}") | |
| return embeddings_by_frame, emotions_by_frame, aligned_face_paths | |
| def cluster_faces(embeddings): | |
| if len(embeddings) < 2: | |
| print("Not enough faces for clustering. Assigning all to one cluster.") | |
| return np.zeros(len(embeddings), dtype=int) | |
| X = np.stack(embeddings) | |
| dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine') | |
| clusters = dbscan.fit_predict(X) | |
| if np.all(clusters == -1): | |
| print("DBSCAN assigned all to noise. Considering as one cluster.") | |
| return np.zeros(len(embeddings), dtype=int) | |
| return clusters | |
| def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): | |
| for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): | |
| person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") | |
| os.makedirs(person_folder, exist_ok=True) | |
| src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
| dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") | |
| shutil.copy(src, dst) | |
| def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration): | |
| emotions = ['angry', 'disgust', 'fear', 'sad', 'happy'] | |
| person_data = {} | |
| for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), emotions_by_frame.items(), clusters): | |
| if cluster not in person_data: | |
| person_data[cluster] = [] | |
| person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions})) | |
| largest_cluster = max(person_data, key=lambda k: len(person_data[k])) | |
| data = person_data[largest_cluster] | |
| data.sort(key=lambda x: x[0]) | |
| frames, embeddings, emotions_data = zip(*data) | |
| embeddings_array = np.array(embeddings) | |
| np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) | |
| total_frames = max(frames) | |
| timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames] | |
| df_data = { | |
| 'Frame': frames, | |
| 'Timecode': timecodes, | |
| 'Embedding_Index': range(len(embeddings)) | |
| } | |
| for i in range(len(embeddings[0])): | |
| df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings] | |
| for emotion in emotions: | |
| df_data[emotion] = [e[emotion] for e in emotions_data] | |
| df = pd.DataFrame(df_data) | |
| return df, largest_cluster | |
| class Autoencoder(nn.Module): | |
| def __init__(self, input_size): | |
| super(Autoencoder, self).__init__() | |
| self.encoder = nn.Sequential( | |
| nn.Linear(input_size, 512), | |
| nn.ReLU(), | |
| nn.Linear(512, 256), | |
| nn.ReLU(), | |
| nn.Linear(256, 128), | |
| nn.ReLU(), | |
| nn.Linear(128, 64) | |
| ) | |
| self.decoder = nn.Sequential( | |
| nn.Linear(64, 128), | |
| nn.ReLU(), | |
| nn.Linear(128, 256), | |
| nn.ReLU(), | |
| nn.Linear(256, 512), | |
| nn.ReLU(), | |
| nn.Linear(512, input_size) | |
| ) | |
| def forward(self, x): | |
| batch_size, seq_len, _ = x.size() | |
| x = x.view(batch_size * seq_len, -1) | |
| encoded = self.encoder(x) | |
| decoded = self.decoder(encoded) | |
| return decoded.view(batch_size, seq_len, -1) | |
| def determine_anomalies(mse_values, threshold): | |
| mean = np.mean(mse_values) | |
| std = np.std(mse_values) | |
| anomalies = mse_values > (mean + threshold * std) | |
| return anomalies | |
| def anomaly_detection(X_emotions, X_embeddings, epochs=200, batch_size=8, patience=3): | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # Normalize emotions | |
| scaler_emotions = MinMaxScaler() | |
| X_emotions_scaled = scaler_emotions.fit_transform(X_emotions) | |
| # Process emotions | |
| X_emotions_scaled = torch.FloatTensor(X_emotions_scaled).to(device) | |
| if X_emotions_scaled.dim() == 2: | |
| X_emotions_scaled = X_emotions_scaled.unsqueeze(0) | |
| model_emotions = Autoencoder(input_size=X_emotions_scaled.shape[2]).to(device) | |
| criterion = nn.MSELoss() | |
| optimizer_emotions = optim.Adam(model_emotions.parameters()) | |
| # Train emotions model | |
| for epoch in range(epochs): | |
| model_emotions.train() | |
| optimizer_emotions.zero_grad() | |
| output_emotions = model_emotions(X_emotions_scaled) | |
| loss_emotions = criterion(output_emotions, X_emotions_scaled) | |
| loss_emotions.backward() | |
| optimizer_emotions.step() | |
| # Process facial embeddings | |
| X_embeddings = torch.FloatTensor(X_embeddings).to(device) | |
| if X_embeddings.dim() == 2: | |
| X_embeddings = X_embeddings.unsqueeze(0) | |
| model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device) | |
| optimizer_embeddings = optim.Adam(model_embeddings.parameters()) | |
| # Train embeddings model | |
| for epoch in range(epochs): | |
| model_embeddings.train() | |
| optimizer_embeddings.zero_grad() | |
| output_embeddings = model_embeddings(X_embeddings) | |
| loss_embeddings = criterion(output_embeddings, X_embeddings) | |
| loss_embeddings.backward() | |
| optimizer_embeddings.step() | |
| # Compute MSE for emotions and embeddings | |
| model_emotions.eval() | |
| model_embeddings.eval() | |
| with torch.no_grad(): | |
| reconstructed_emotions = model_emotions(X_emotions_scaled).cpu().numpy() | |
| reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy() | |
| mse_emotions = np.mean(np.power(X_emotions_scaled.cpu().numpy() - reconstructed_emotions, 2), axis=2).squeeze() | |
| mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze() | |
| return mse_emotions, mse_embeddings | |
| def plot_mse(df, mse_values, title, color='blue', time_threshold=3, anomaly_threshold=4): | |
| plt.figure(figsize=(16, 8), dpi=500) | |
| fig, ax = plt.subplots(figsize=(16, 8)) | |
| if 'Seconds' not in df.columns: | |
| df['Seconds'] = df['Timecode'].apply( | |
| lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
| # Ensure df and mse_values have the same length and remove NaN values | |
| min_length = min(len(df), len(mse_values)) | |
| df = df.iloc[:min_length] | |
| mse_values = mse_values[:min_length] | |
| # Remove NaN values | |
| mask = ~np.isnan(mse_values) | |
| df = df[mask] | |
| mse_values = mse_values[mask] | |
| mean = pd.Series(mse_values).rolling(window=10).mean() | |
| std = pd.Series(mse_values).rolling(window=10).std() | |
| median = np.median(mse_values) | |
| ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5) | |
| ax.plot(df['Seconds'], mean, color=color, linewidth=2) | |
| ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.2) | |
| # Add median line | |
| ax.axhline(y=median, color='black', linestyle='--', label='Baseline') | |
| ax.text(ax.get_xlim()[1], median, 'Baseline', verticalalignment='center', horizontalalignment='left', color='black') | |
| # Add threshold line | |
| threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values) | |
| ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}') | |
| ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red') | |
| anomalies = determine_anomalies(mse_values, anomaly_threshold) | |
| anomaly_frames = df['Frame'].iloc[anomalies].tolist() | |
| ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=25, zorder=5) | |
| anomaly_data = list(zip(df['Timecode'].iloc[anomalies], | |
| df['Seconds'].iloc[anomalies], | |
| mse_values[anomalies])) | |
| anomaly_data.sort(key=lambda x: x[1]) | |
| grouped_anomalies = [] | |
| current_group = [] | |
| for timecode, sec, mse in anomaly_data: | |
| if not current_group or sec - current_group[-1][1] <= time_threshold: | |
| current_group.append((timecode, sec, mse)) | |
| else: | |
| grouped_anomalies.append(current_group) | |
| current_group = [(timecode, sec, mse)] | |
| if current_group: | |
| grouped_anomalies.append(current_group) | |
| for group in grouped_anomalies: | |
| start_sec = group[0][1] | |
| end_sec = group[-1][1] | |
| rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0], | |
| facecolor='red', alpha=0.3, zorder=1) | |
| ax.add_patch(rect) | |
| for group in grouped_anomalies: | |
| highest_mse_anomaly = max(group, key=lambda x: x[2]) | |
| timecode, sec, mse = highest_mse_anomaly | |
| ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10), | |
| ha='center', fontsize=6, color='red') | |
| max_seconds = df['Seconds'].max() | |
| num_ticks = 100 | |
| tick_locations = np.linspace(0, max_seconds, num_ticks) | |
| tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] | |
| ax.set_xticks(tick_locations) | |
| ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) | |
| ax.set_xlabel('Timecode') | |
| ax.set_ylabel('Mean Squared Error') | |
| ax.set_title(title) | |
| ax.grid(True, linestyle='--', alpha=0.7) | |
| ax.legend() | |
| plt.tight_layout() | |
| plt.close() | |
| return fig, anomaly_frames | |
| def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'): | |
| plt.figure(figsize=(16, 8), dpi=500) | |
| fig, ax = plt.subplots(figsize=(16, 8)) | |
| ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7) | |
| ax.set_xlabel('Mean Squared Error') | |
| ax.set_ylabel('Number of Samples') | |
| ax.set_title(title) | |
| mean = np.mean(mse_values) | |
| std = np.std(mse_values) | |
| threshold = mean + anomaly_threshold * std | |
| ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2) | |
| # Move annotation to the bottom and away from the line | |
| ax.annotate(f'Threshold: {anomaly_threshold:.1f}', | |
| xy=(threshold, ax.get_ylim()[0]), | |
| xytext=(0, -20), | |
| textcoords='offset points', | |
| ha='center', va='top', | |
| bbox=dict(boxstyle='round,pad=0.5', fc='white', ec='none', alpha=0.7), | |
| color='red') | |
| plt.tight_layout() | |
| plt.close() | |
| return fig | |
| def plot_emotion(df, emotion, color, anomaly_threshold): | |
| plt.figure(figsize=(16, 8), dpi=500) | |
| fig, ax = plt.subplots(figsize=(16, 8)) | |
| df['Seconds'] = df['Timecode'].apply( | |
| lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
| mean = df[emotion].rolling(window=10).mean() | |
| std = df[emotion].rolling(window=10).std() | |
| median = df[emotion].median() | |
| ax.scatter(df['Seconds'], df[emotion], color=color, alpha=0.3, s=5) | |
| ax.plot(df['Seconds'], mean, color=color, linewidth=2) | |
| ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.2) | |
| # Add median line | |
| ax.axhline(y=median, color='black', linestyle='--', label='Baseline') | |
| ax.text(ax.get_xlim()[1], median, 'Baseline', verticalalignment='center', horizontalalignment='left', color='black') | |
| # Convert anomaly threshold to probability | |
| probability_threshold = (anomaly_threshold - 1) / 6 # Convert 1-7 scale to 0-1 probability | |
| # Add threshold line and detect anomalies | |
| ax.axhline(y=probability_threshold, color='red', linestyle='--', label=f'Threshold: {probability_threshold:.2f}') | |
| ax.text(ax.get_xlim()[1], probability_threshold, f'Threshold: {probability_threshold:.2f}', | |
| verticalalignment='center', horizontalalignment='left', color='red') | |
| # Detect and highlight anomalies | |
| anomalies = df[emotion] >= probability_threshold | |
| ax.scatter(df['Seconds'][anomalies], df[emotion][anomalies], color='red', s=25, zorder=5) | |
| max_seconds = df['Seconds'].max() | |
| num_ticks = 100 | |
| tick_locations = np.linspace(0, max_seconds, num_ticks) | |
| tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] | |
| ax.set_xticks(tick_locations) | |
| ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) | |
| ax.set_xlabel('Timecode') | |
| ax.set_ylabel('Emotion Probability') | |
| ax.set_title(f"{emotion.capitalize()} Over Time") | |
| ax.grid(True, linestyle='--', alpha=0.7) | |
| ax.legend() | |
| plt.tight_layout() | |
| plt.close() | |
| return fig | |
| def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=500): | |
| face_samples = {"most_frequent": [], "others": []} | |
| for cluster_folder in sorted(os.listdir(organized_faces_folder)): | |
| if cluster_folder.startswith("person_"): | |
| person_folder = os.path.join(organized_faces_folder, cluster_folder) | |
| face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')]) | |
| if face_files: | |
| cluster_id = int(cluster_folder.split('_')[1]) | |
| if cluster_id == largest_cluster: | |
| for i, sample in enumerate(face_files[:max_samples]): | |
| face_path = os.path.join(person_folder, sample) | |
| output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg") | |
| face_img = cv2.imread(face_path) | |
| if face_img is not None: | |
| small_face = cv2.resize(face_img, (160, 160)) | |
| cv2.imwrite(output_path, small_face) | |
| face_samples["most_frequent"].append(output_path) | |
| if len(face_samples["most_frequent"]) >= max_samples: | |
| break | |
| else: | |
| remaining_samples = max_samples - len(face_samples["others"]) | |
| if remaining_samples > 0: | |
| for i, sample in enumerate(face_files[:remaining_samples]): | |
| face_path = os.path.join(person_folder, sample) | |
| output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg") | |
| face_img = cv2.imread(face_path) | |
| if face_img is not None: | |
| small_face = cv2.resize(face_img, (160, 160)) | |
| cv2.imwrite(output_path, small_face) | |
| face_samples["others"].append(output_path) | |
| if len(face_samples["others"]) >= max_samples: | |
| break | |
| return face_samples | |
| def process_video(video_path, anomaly_threshold, desired_fps, progress=gr.Progress()): | |
| start_time = time.time() | |
| output_folder = "output" | |
| os.makedirs(output_folder, exist_ok=True) | |
| batch_size = 16 | |
| with tempfile.TemporaryDirectory() as temp_dir: | |
| aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') | |
| organized_faces_folder = os.path.join(temp_dir, 'organized_faces') | |
| os.makedirs(aligned_faces_folder, exist_ok=True) | |
| os.makedirs(organized_faces_folder, exist_ok=True) | |
| clip = VideoFileClip(video_path) | |
| video_duration = clip.duration | |
| clip.close() | |
| progress(0, "Starting frame extraction") | |
| frames_folder = os.path.join(temp_dir, 'extracted_frames') | |
| def extraction_progress(percent, message): | |
| progress(percent / 100, f"Extracting frames") | |
| frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress) | |
| progress(1, "Frame extraction complete") | |
| progress(0.3, "Processing frames") | |
| embeddings_by_frame, emotions_by_frame, aligned_face_paths = process_frames(frames_folder, aligned_faces_folder, | |
| frame_count, | |
| progress, batch_size) | |
| if not aligned_face_paths: | |
| return ("No faces were extracted from the video.",) + (None,) * 10 | |
| progress(0.6, "Clustering faces") | |
| embeddings = [embedding for _, embedding in embeddings_by_frame.items()] | |
| clusters = cluster_faces(embeddings) | |
| num_clusters = len(set(clusters)) | |
| progress(0.7, "Organizing faces") | |
| organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) | |
| progress(0.8, "Saving person data") | |
| df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, | |
| original_fps, temp_dir, video_duration) | |
| # Add 'Seconds' column to df | |
| df['Seconds'] = df['Timecode'].apply( | |
| lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
| progress(0.85, "Getting face samples") | |
| face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster) | |
| progress(0.9, "Performing anomaly detection") | |
| emotion_columns = ['angry', 'disgust', 'fear', 'sad', 'happy'] | |
| embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')] | |
| X_emotions = df[emotion_columns].values | |
| X_embeddings = df[embedding_columns].values | |
| try: | |
| mse_emotions, mse_embeddings = anomaly_detection(X_emotions, X_embeddings, batch_size=batch_size) | |
| progress(0.95, "Generating plots") | |
| mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Embeddings", | |
| color='green', | |
| anomaly_threshold=anomaly_threshold) | |
| mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Embeddings", | |
| anomaly_threshold, color='green') | |
| # Add emotion plots | |
| emotion_plots = [] | |
| for emotion, color in zip(emotion_columns, ['purple', 'brown', 'green', 'orange', 'darkblue']): | |
| emotion_plot = plot_emotion(df, emotion, color, anomaly_threshold) | |
| emotion_plots.append(emotion_plot) | |
| mse_var_emotions = np.var(mse_emotions) | |
| mse_var_embeddings = np.var(mse_embeddings) | |
| except Exception as e: | |
| print(f"Error details: {str(e)}") | |
| return (f"Error in anomaly detection: {str(e)}",) + (None,) * 15 | |
| progress(1.0, "Preparing results") | |
| results = f"Number of persons/clusters detected: {num_clusters}\n\n" | |
| results += f"Breakdown of persons/clusters:\n" | |
| for cluster_id in range(num_clusters): | |
| results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n" | |
| end_time = time.time() | |
| execution_time = end_time - start_time | |
| # Load anomaly frames as images | |
| anomaly_faces_embeddings = [ | |
| cv2.imread(os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")) | |
| for frame in anomaly_frames_embeddings | |
| if os.path.exists(os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")) | |
| ] | |
| anomaly_faces_embeddings = [cv2.cvtColor(face, cv2.COLOR_BGR2RGB) for face in anomaly_faces_embeddings if face is not None] | |
| return ( | |
| execution_time, | |
| results, | |
| df, | |
| mse_embeddings, | |
| mse_emotions, | |
| mse_plot_embeddings, | |
| mse_histogram_embeddings, | |
| *emotion_plots, | |
| face_samples["most_frequent"], | |
| face_samples["others"], | |
| anomaly_faces_embeddings, | |
| aligned_faces_folder | |
| ) | |
| with gr.Blocks() as iface: | |
| gr.Markdown("# Facial Expressions Anomaly Detection") | |
| with gr.Row(): | |
| video_input = gr.Video() | |
| anomaly_threshold = gr.Slider(minimum=1, maximum=7, step=0.1, value=4.5, label="Anomaly Detection Threshold") | |
| fps_slider = gr.Slider(minimum=10, maximum=20, step=5, value=20, label="Frames Per Second") | |
| process_btn = gr.Button("Process Video") | |
| execution_time = gr.Number(label="Execution Time (seconds)") | |
| results_text = gr.Textbox(label="Anomaly Detection Results") | |
| anomaly_frames_embeddings = gr.Gallery(label="Anomaly Frames (Facial Embeddings)", columns=6, rows=2, height="auto") | |
| mse_embeddings_plot = gr.Plot(label="MSE: Facial Embeddings") | |
| mse_embeddings_hist = gr.Plot(label="MSE Distribution: Facial Embeddings") | |
| # Add emotion plots | |
| emotion_plots = [gr.Plot(label=f"{emotion.capitalize()} Over Time") for emotion in ['angry', 'disgust', 'fear', 'sad', 'happy']] | |
| face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto") | |
| face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto") | |
| # Hidden components to store intermediate results | |
| df_store = gr.State() | |
| mse_emotions_store = gr.State() | |
| mse_embeddings_store = gr.State() | |
| aligned_faces_folder_store = gr.State() | |
| process_btn.click( | |
| process_video, | |
| inputs=[video_input, anomaly_threshold, fps_slider], | |
| outputs=[ | |
| execution_time, results_text, df_store, mse_embeddings_store, mse_emotions_store, | |
| mse_embeddings_plot, mse_embeddings_hist, | |
| *emotion_plots, | |
| face_samples_most_frequent, face_samples_others, anomaly_frames_embeddings, | |
| aligned_faces_folder_store | |
| ] | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |