Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
|
@@ -5,38 +6,35 @@ import torch
|
|
| 5 |
import torch.nn as nn
|
| 6 |
import torch.optim as optim
|
| 7 |
from facenet_pytorch import InceptionResnetV1, MTCNN
|
|
|
|
| 8 |
import mediapipe as mp
|
| 9 |
from fer import FER
|
| 10 |
from sklearn.cluster import DBSCAN
|
| 11 |
-
from sklearn.preprocessing import MinMaxScaler
|
| 12 |
-
from sklearn.decomposition import PCA
|
| 13 |
-
import umap
|
| 14 |
import pandas as pd
|
| 15 |
import matplotlib
|
| 16 |
import matplotlib.pyplot as plt
|
|
|
|
| 17 |
from moviepy.editor import VideoFileClip
|
| 18 |
from PIL import Image
|
| 19 |
import gradio as gr
|
| 20 |
import tempfile
|
| 21 |
import shutil
|
| 22 |
-
import
|
| 23 |
-
|
| 24 |
-
print(torch.__version__)
|
| 25 |
-
print(torch.version.cuda)
|
| 26 |
|
| 27 |
matplotlib.rcParams['figure.dpi'] = 500
|
| 28 |
matplotlib.rcParams['savefig.dpi'] = 500
|
| 29 |
|
| 30 |
# Initialize models and other global variables
|
| 31 |
-
device = 'cuda'
|
| 32 |
|
| 33 |
-
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.
|
| 34 |
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
| 35 |
mp_face_mesh = mp.solutions.face_mesh
|
| 36 |
-
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.
|
| 37 |
emotion_detector = FER(mtcnn=False)
|
| 38 |
|
| 39 |
-
|
| 40 |
def frame_to_timecode(frame_num, total_frames, duration):
|
| 41 |
total_seconds = (frame_num / total_frames) * duration
|
| 42 |
hours = int(total_seconds // 3600)
|
|
@@ -45,6 +43,15 @@ def frame_to_timecode(frame_num, total_frames, duration):
|
|
| 45 |
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
|
| 46 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def get_face_embedding_and_emotion(face_img):
|
| 50 |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
|
@@ -57,11 +64,10 @@ def get_face_embedding_and_emotion(face_img):
|
|
| 57 |
if emotions:
|
| 58 |
emotion_dict = emotions[0]['emotions']
|
| 59 |
else:
|
| 60 |
-
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', '
|
| 61 |
|
| 62 |
return embedding.cpu().numpy().flatten(), emotion_dict
|
| 63 |
|
| 64 |
-
|
| 65 |
def alignFace(img):
|
| 66 |
img_raw = img.copy()
|
| 67 |
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
|
@@ -87,7 +93,6 @@ def alignFace(img):
|
|
| 87 |
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
|
| 88 |
return new_img
|
| 89 |
|
| 90 |
-
|
| 91 |
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
|
| 92 |
os.makedirs(output_folder, exist_ok=True)
|
| 93 |
clip = VideoFileClip(video_path)
|
|
@@ -111,6 +116,19 @@ def extract_frames(video_path, output_folder, desired_fps, progress_callback=Non
|
|
| 111 |
clip.close()
|
| 112 |
return frame_count, original_fps
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
|
| 116 |
embeddings_by_frame = {}
|
|
@@ -140,29 +158,29 @@ def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, b
|
|
| 140 |
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
|
| 141 |
face = frame[y1:y2, x1:x2]
|
| 142 |
if face.size > 0:
|
| 143 |
-
|
| 144 |
-
if
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
| 155 |
|
| 156 |
return embeddings_by_frame, emotions_by_frame, aligned_face_paths
|
| 157 |
|
| 158 |
-
|
| 159 |
def cluster_faces(embeddings):
|
| 160 |
if len(embeddings) < 2:
|
| 161 |
print("Not enough faces for clustering. Assigning all to one cluster.")
|
| 162 |
return np.zeros(len(embeddings), dtype=int)
|
| 163 |
|
| 164 |
X = np.stack(embeddings)
|
| 165 |
-
|
| 166 |
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
|
| 167 |
clusters = dbscan.fit_predict(X)
|
| 168 |
|
|
@@ -172,7 +190,6 @@ def cluster_faces(embeddings):
|
|
| 172 |
|
| 173 |
return clusters
|
| 174 |
|
| 175 |
-
|
| 176 |
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
|
| 177 |
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
|
| 178 |
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
|
|
@@ -181,39 +198,11 @@ def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder
|
|
| 181 |
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
|
| 182 |
shutil.copy(src, dst)
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
pca = PCA(n_components=max_components)
|
| 187 |
-
pca.fit(embeddings)
|
| 188 |
-
|
| 189 |
-
explained_variance_ratio = pca.explained_variance_ratio_
|
| 190 |
-
cumulative_variance_ratio = np.cumsum(explained_variance_ratio)
|
| 191 |
-
|
| 192 |
-
# Plot explained variance ratio
|
| 193 |
-
plt.figure(figsize=(10, 6))
|
| 194 |
-
plt.plot(range(1, max_components + 1), cumulative_variance_ratio, 'bo-')
|
| 195 |
-
plt.xlabel('Number of Components')
|
| 196 |
-
plt.ylabel('Cumulative Explained Variance Ratio')
|
| 197 |
-
plt.title('Explained Variance Ratio vs. Number of Components')
|
| 198 |
-
plt.grid(True)
|
| 199 |
-
|
| 200 |
-
# Find elbow point
|
| 201 |
-
differences = np.diff(cumulative_variance_ratio)
|
| 202 |
-
elbow_point = np.argmin(differences) + 1
|
| 203 |
-
|
| 204 |
-
plt.axvline(x=elbow_point, color='r', linestyle='--', label=f'Elbow point: {elbow_point}')
|
| 205 |
-
plt.legend()
|
| 206 |
-
|
| 207 |
-
return elbow_point, plt
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder,
|
| 211 |
-
video_duration):
|
| 212 |
-
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
| 213 |
person_data = {}
|
| 214 |
|
| 215 |
-
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(),
|
| 216 |
-
emotions_by_frame.items(), clusters):
|
| 217 |
if cluster not in person_data:
|
| 218 |
person_data[cluster] = []
|
| 219 |
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
|
|
@@ -227,33 +216,18 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
|
|
| 227 |
embeddings_array = np.array(embeddings)
|
| 228 |
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
|
| 229 |
|
| 230 |
-
# Find optimal number of components
|
| 231 |
-
optimal_components, _ = find_optimal_components(embeddings_array)
|
| 232 |
-
|
| 233 |
-
reducer = umap.UMAP(n_components=optimal_components, random_state=1)
|
| 234 |
-
embeddings_reduced = reducer.fit_transform(embeddings)
|
| 235 |
-
|
| 236 |
-
scaler = MinMaxScaler(feature_range=(0, 1))
|
| 237 |
-
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
|
| 238 |
-
|
| 239 |
total_frames = max(frames)
|
| 240 |
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
|
| 241 |
-
times_in_minutes = [frame / total_frames * video_duration / 60 for frame in frames]
|
| 242 |
|
| 243 |
df_data = {
|
| 244 |
'Frame': frames,
|
| 245 |
'Timecode': timecodes,
|
| 246 |
-
'Time (Minutes)': times_in_minutes,
|
| 247 |
'Embedding_Index': range(len(embeddings))
|
| 248 |
}
|
| 249 |
|
| 250 |
-
# Add raw embeddings
|
| 251 |
for i in range(len(embeddings[0])):
|
| 252 |
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
|
| 253 |
|
| 254 |
-
for i in range(optimal_components):
|
| 255 |
-
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
|
| 256 |
-
|
| 257 |
for emotion in emotions:
|
| 258 |
df_data[emotion] = [e[emotion] for e in emotions_data]
|
| 259 |
|
|
@@ -261,123 +235,139 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
|
|
| 261 |
|
| 262 |
return df, largest_cluster
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
def forward(self, x):
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
|
|
|
|
|
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
if X.dim() == 2:
|
| 284 |
-
X = X.unsqueeze(0)
|
| 285 |
-
elif X.dim() == 1:
|
| 286 |
-
X = X.unsqueeze(0).unsqueeze(2)
|
| 287 |
|
| 288 |
-
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
-
|
| 291 |
criterion = nn.MSELoss()
|
| 292 |
-
|
| 293 |
|
|
|
|
| 294 |
for epoch in range(epochs):
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
with torch.no_grad():
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
|
| 310 |
-
|
| 311 |
-
component_columns = [col for col in feature_columns if col.startswith('Comp')]
|
| 312 |
-
component_indices = [feature_columns.index(col) for col in component_columns]
|
| 313 |
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
|
| 317 |
-
else:
|
| 318 |
-
mse_comp = mse_all
|
| 319 |
-
|
| 320 |
-
raw_embedding_indices = [feature_columns.index(col) for col in raw_embedding_columns]
|
| 321 |
-
mse_raw = np.mean(np.power(X.squeeze(0).cpu().numpy()[:, raw_embedding_indices] - reconstructed[:, raw_embedding_indices], 2), axis=1)
|
| 322 |
|
| 323 |
-
return
|
| 324 |
|
| 325 |
-
def
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
if X.dim() == 2:
|
| 329 |
-
X = X.unsqueeze(0)
|
| 330 |
-
elif X.dim() == 1:
|
| 331 |
-
X = X.unsqueeze(0).unsqueeze(2)
|
| 332 |
-
|
| 333 |
-
model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
|
| 334 |
-
criterion = nn.MSELoss()
|
| 335 |
-
optimizer = optim.Adam(model.parameters())
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
output = model(X)
|
| 341 |
-
loss = criterion(output, X)
|
| 342 |
-
loss.backward()
|
| 343 |
-
optimizer.step()
|
| 344 |
-
|
| 345 |
-
model.eval()
|
| 346 |
-
with torch.no_grad():
|
| 347 |
-
reconstructed = model(X).squeeze(0).cpu().numpy()
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
| 351 |
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
return anomalies
|
| 357 |
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
|
| 363 |
-
|
| 364 |
-
|
|
|
|
| 365 |
|
| 366 |
-
#
|
| 367 |
-
|
|
|
|
|
|
|
| 368 |
|
| 369 |
-
|
| 370 |
-
|
| 371 |
|
| 372 |
-
|
| 373 |
-
visible_anomalies = np.where(anomalies)[0][hide_first_n:]
|
| 374 |
-
ax.scatter(df['Seconds'].iloc[visible_anomalies], mse_values[visible_anomalies], color='red', s=50, zorder=5)
|
| 375 |
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
anomaly_data.sort(key=lambda x: x[1]) # Sort by seconds
|
| 381 |
|
| 382 |
grouped_anomalies = []
|
| 383 |
current_group = []
|
|
@@ -390,38 +380,116 @@ def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n
|
|
| 390 |
if current_group:
|
| 391 |
grouped_anomalies.append(current_group)
|
| 392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
for group in grouped_anomalies:
|
| 394 |
highest_mse_anomaly = max(group, key=lambda x: x[2])
|
| 395 |
timecode, sec, mse = highest_mse_anomaly
|
| 396 |
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
|
| 397 |
-
ha='center', fontsize=
|
| 398 |
|
| 399 |
-
# Add baseline (mean MSE) line
|
| 400 |
-
mean_mse = np.mean(mse_values)
|
| 401 |
-
ax.axhline(y=mean_mse, color='black', linestyle='--', linewidth=1)
|
| 402 |
-
ax.text(df['Seconds'].max(), mean_mse, f'Baseline ({mean_mse:.6f})',
|
| 403 |
-
verticalalignment='bottom', horizontalalignment='right', color='black', fontsize=8)
|
| 404 |
-
|
| 405 |
-
# Set x-axis labels to timecodes
|
| 406 |
max_seconds = df['Seconds'].max()
|
| 407 |
num_ticks = 100
|
| 408 |
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
| 409 |
-
tick_labels = [
|
| 410 |
-
for s in tick_locations]
|
| 411 |
|
| 412 |
ax.set_xticks(tick_locations)
|
| 413 |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
| 414 |
|
| 415 |
-
ax.set_xlabel('
|
| 416 |
ax.set_ylabel('Mean Squared Error')
|
| 417 |
ax.set_title(title)
|
| 418 |
|
| 419 |
ax.grid(True, linestyle='--', alpha=0.7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
plt.tight_layout()
|
| 421 |
plt.close()
|
| 422 |
return fig
|
| 423 |
|
| 424 |
-
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster):
|
| 425 |
face_samples = {"most_frequent": [], "others": []}
|
| 426 |
for cluster_folder in sorted(os.listdir(organized_faces_folder)):
|
| 427 |
if cluster_folder.startswith("person_"):
|
|
@@ -430,7 +498,7 @@ def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
|
| 430 |
if face_files:
|
| 431 |
cluster_id = int(cluster_folder.split('_')[1])
|
| 432 |
if cluster_id == largest_cluster:
|
| 433 |
-
for i, sample in enumerate(face_files):
|
| 434 |
face_path = os.path.join(person_folder, sample)
|
| 435 |
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
|
| 436 |
face_img = cv2.imread(face_path)
|
|
@@ -438,27 +506,28 @@ def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
|
| 438 |
small_face = cv2.resize(face_img, (160, 160))
|
| 439 |
cv2.imwrite(output_path, small_face)
|
| 440 |
face_samples["most_frequent"].append(output_path)
|
|
|
|
|
|
|
| 441 |
else:
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
return face_samples
|
| 451 |
|
| 452 |
-
def process_video(video_path,
|
|
|
|
| 453 |
output_folder = "output"
|
| 454 |
os.makedirs(output_folder, exist_ok=True)
|
| 455 |
-
|
| 456 |
-
# Initialize plot variables
|
| 457 |
-
mse_plot_all = None
|
| 458 |
-
mse_plot_comp = None
|
| 459 |
-
mse_plot_raw = None
|
| 460 |
-
emotion_plots = [None] * 6 # For the 6 emotions
|
| 461 |
-
face_samples = {"most_frequent": [], "others": []}
|
| 462 |
|
| 463 |
with tempfile.TemporaryDirectory() as temp_dir:
|
| 464 |
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
|
|
@@ -485,13 +554,12 @@ def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
|
|
| 485 |
progress, batch_size)
|
| 486 |
|
| 487 |
if not aligned_face_paths:
|
| 488 |
-
return ("No faces were extracted from the video.",
|
| 489 |
-
None, None, None, None, None, None, None, None, None, [], [])
|
| 490 |
|
| 491 |
progress(0.6, "Clustering faces")
|
| 492 |
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
|
| 493 |
clusters = cluster_faces(embeddings)
|
| 494 |
-
num_clusters = len(set(clusters))
|
| 495 |
|
| 496 |
progress(0.7, "Organizing faces")
|
| 497 |
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
|
|
@@ -500,35 +568,42 @@ def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
|
|
| 500 |
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
|
| 501 |
original_fps, temp_dir, video_duration)
|
| 502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
progress(0.85, "Getting face samples")
|
| 504 |
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
| 505 |
|
| 506 |
progress(0.9, "Performing anomaly detection")
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
|
|
|
| 511 |
|
| 512 |
try:
|
| 513 |
-
|
| 514 |
-
X, feature_columns, raw_embedding_columns, batch_size=batch_size)
|
| 515 |
|
| 516 |
progress(0.95, "Generating plots")
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
| 520 |
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
|
|
|
|
|
|
| 527 |
|
| 528 |
except Exception as e:
|
| 529 |
print(f"Error details: {str(e)}")
|
| 530 |
-
return (f"Error in anomaly detection: {str(e)}",
|
| 531 |
-
None, None, None, None, None, None, None, None, None, [], [])
|
| 532 |
|
| 533 |
progress(1.0, "Preparing results")
|
| 534 |
results = f"Number of persons/clusters detected: {num_clusters}\n\n"
|
|
@@ -536,58 +611,73 @@ def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
|
|
| 536 |
for cluster_id in range(num_clusters):
|
| 537 |
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n"
|
| 538 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
return (
|
|
|
|
| 540 |
results,
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
|
|
|
|
|
|
| 544 |
*emotion_plots,
|
| 545 |
face_samples["most_frequent"],
|
| 546 |
-
face_samples["others"]
|
|
|
|
|
|
|
| 547 |
)
|
| 548 |
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
gr.
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
iface.launch()
|
|
|
|
| 1 |
+
import math
|
| 2 |
import os
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
|
|
|
| 6 |
import torch.nn as nn
|
| 7 |
import torch.optim as optim
|
| 8 |
from facenet_pytorch import InceptionResnetV1, MTCNN
|
| 9 |
+
import tensorflow as tf
|
| 10 |
import mediapipe as mp
|
| 11 |
from fer import FER
|
| 12 |
from sklearn.cluster import DBSCAN
|
| 13 |
+
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
|
|
|
|
|
|
| 14 |
import pandas as pd
|
| 15 |
import matplotlib
|
| 16 |
import matplotlib.pyplot as plt
|
| 17 |
+
from matplotlib.patches import Rectangle
|
| 18 |
from moviepy.editor import VideoFileClip
|
| 19 |
from PIL import Image
|
| 20 |
import gradio as gr
|
| 21 |
import tempfile
|
| 22 |
import shutil
|
| 23 |
+
import copy
|
| 24 |
+
import time
|
|
|
|
|
|
|
| 25 |
|
| 26 |
matplotlib.rcParams['figure.dpi'] = 500
|
| 27 |
matplotlib.rcParams['savefig.dpi'] = 500
|
| 28 |
|
| 29 |
# Initialize models and other global variables
|
| 30 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 31 |
|
| 32 |
+
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80)
|
| 33 |
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
| 34 |
mp_face_mesh = mp.solutions.face_mesh
|
| 35 |
+
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
|
| 36 |
emotion_detector = FER(mtcnn=False)
|
| 37 |
|
|
|
|
| 38 |
def frame_to_timecode(frame_num, total_frames, duration):
|
| 39 |
total_seconds = (frame_num / total_frames) * duration
|
| 40 |
hours = int(total_seconds // 3600)
|
|
|
|
| 43 |
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
|
| 44 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
| 45 |
|
| 46 |
+
def seconds_to_timecode(seconds):
|
| 47 |
+
hours = int(seconds // 3600)
|
| 48 |
+
minutes = int((seconds % 3600) // 60)
|
| 49 |
+
seconds = int(seconds % 60)
|
| 50 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
|
| 51 |
+
|
| 52 |
+
def timecode_to_seconds(timecode):
|
| 53 |
+
h, m, s = map(int, timecode.split(':'))
|
| 54 |
+
return h * 3600 + m * 60 + s
|
| 55 |
|
| 56 |
def get_face_embedding_and_emotion(face_img):
|
| 57 |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
|
|
|
| 64 |
if emotions:
|
| 65 |
emotion_dict = emotions[0]['emotions']
|
| 66 |
else:
|
| 67 |
+
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'sad', 'happy']}
|
| 68 |
|
| 69 |
return embedding.cpu().numpy().flatten(), emotion_dict
|
| 70 |
|
|
|
|
| 71 |
def alignFace(img):
|
| 72 |
img_raw = img.copy()
|
| 73 |
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
|
|
|
| 93 |
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
|
| 94 |
return new_img
|
| 95 |
|
|
|
|
| 96 |
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
|
| 97 |
os.makedirs(output_folder, exist_ok=True)
|
| 98 |
clip = VideoFileClip(video_path)
|
|
|
|
| 116 |
clip.close()
|
| 117 |
return frame_count, original_fps
|
| 118 |
|
| 119 |
+
def is_frontal_face(landmarks, threshold=40):
|
| 120 |
+
nose_tip = landmarks[4]
|
| 121 |
+
left_chin = landmarks[234]
|
| 122 |
+
right_chin = landmarks[454]
|
| 123 |
+
nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y]
|
| 124 |
+
nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y]
|
| 125 |
+
dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1]
|
| 126 |
+
magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2)
|
| 127 |
+
magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2)
|
| 128 |
+
cos_angle = dot_product / (magnitude_left * magnitude_right)
|
| 129 |
+
angle = math.acos(cos_angle)
|
| 130 |
+
angle_degrees = math.degrees(angle)
|
| 131 |
+
return abs(180 - angle_degrees) < threshold
|
| 132 |
|
| 133 |
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
|
| 134 |
embeddings_by_frame = {}
|
|
|
|
| 158 |
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
|
| 159 |
face = frame[y1:y2, x1:x2]
|
| 160 |
if face.size > 0:
|
| 161 |
+
results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
|
| 162 |
+
if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark):
|
| 163 |
+
aligned_face = alignFace(face)
|
| 164 |
+
if aligned_face is not None:
|
| 165 |
+
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
|
| 166 |
+
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
|
| 167 |
+
cv2.imwrite(output_path, aligned_face_resized)
|
| 168 |
+
aligned_face_paths.append(output_path)
|
| 169 |
+
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
|
| 170 |
+
embeddings_by_frame[frame_num] = embedding
|
| 171 |
+
emotions_by_frame[frame_num] = emotion
|
| 172 |
+
|
| 173 |
+
progress((i + len(batch_files)) / len(frame_files),
|
| 174 |
+
f"Processing frames {i + 1} to {min(i + len(batch_files), len(frame_files))} of {len(frame_files)}")
|
| 175 |
|
| 176 |
return embeddings_by_frame, emotions_by_frame, aligned_face_paths
|
| 177 |
|
|
|
|
| 178 |
def cluster_faces(embeddings):
|
| 179 |
if len(embeddings) < 2:
|
| 180 |
print("Not enough faces for clustering. Assigning all to one cluster.")
|
| 181 |
return np.zeros(len(embeddings), dtype=int)
|
| 182 |
|
| 183 |
X = np.stack(embeddings)
|
|
|
|
| 184 |
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
|
| 185 |
clusters = dbscan.fit_predict(X)
|
| 186 |
|
|
|
|
| 190 |
|
| 191 |
return clusters
|
| 192 |
|
|
|
|
| 193 |
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
|
| 194 |
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
|
| 195 |
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
|
|
|
|
| 198 |
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
|
| 199 |
shutil.copy(src, dst)
|
| 200 |
|
| 201 |
+
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
|
| 202 |
+
emotions = ['angry', 'disgust', 'fear', 'sad', 'happy']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
person_data = {}
|
| 204 |
|
| 205 |
+
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), emotions_by_frame.items(), clusters):
|
|
|
|
| 206 |
if cluster not in person_data:
|
| 207 |
person_data[cluster] = []
|
| 208 |
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
|
|
|
|
| 216 |
embeddings_array = np.array(embeddings)
|
| 217 |
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
|
| 218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
total_frames = max(frames)
|
| 220 |
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
|
|
|
|
| 221 |
|
| 222 |
df_data = {
|
| 223 |
'Frame': frames,
|
| 224 |
'Timecode': timecodes,
|
|
|
|
| 225 |
'Embedding_Index': range(len(embeddings))
|
| 226 |
}
|
| 227 |
|
|
|
|
| 228 |
for i in range(len(embeddings[0])):
|
| 229 |
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
|
| 230 |
|
|
|
|
|
|
|
|
|
|
| 231 |
for emotion in emotions:
|
| 232 |
df_data[emotion] = [e[emotion] for e in emotions_data]
|
| 233 |
|
|
|
|
| 235 |
|
| 236 |
return df, largest_cluster
|
| 237 |
|
| 238 |
+
class Autoencoder(nn.Module):
|
| 239 |
+
def __init__(self, input_size):
|
| 240 |
+
super(Autoencoder, self).__init__()
|
| 241 |
+
self.encoder = nn.Sequential(
|
| 242 |
+
nn.Linear(input_size, 512),
|
| 243 |
+
nn.ReLU(),
|
| 244 |
+
nn.Linear(512, 256),
|
| 245 |
+
nn.ReLU(),
|
| 246 |
+
nn.Linear(256, 128),
|
| 247 |
+
nn.ReLU(),
|
| 248 |
+
nn.Linear(128, 64)
|
| 249 |
+
)
|
| 250 |
+
self.decoder = nn.Sequential(
|
| 251 |
+
nn.Linear(64, 128),
|
| 252 |
+
nn.ReLU(),
|
| 253 |
+
nn.Linear(128, 256),
|
| 254 |
+
nn.ReLU(),
|
| 255 |
+
nn.Linear(256, 512),
|
| 256 |
+
nn.ReLU(),
|
| 257 |
+
nn.Linear(512, input_size)
|
| 258 |
+
)
|
| 259 |
|
| 260 |
def forward(self, x):
|
| 261 |
+
batch_size, seq_len, _ = x.size()
|
| 262 |
+
x = x.view(batch_size * seq_len, -1)
|
| 263 |
+
encoded = self.encoder(x)
|
| 264 |
+
decoded = self.decoder(encoded)
|
| 265 |
+
return decoded.view(batch_size, seq_len, -1)
|
| 266 |
+
|
| 267 |
+
def determine_anomalies(mse_values, threshold):
|
| 268 |
+
mean = np.mean(mse_values)
|
| 269 |
+
std = np.std(mse_values)
|
| 270 |
+
anomalies = mse_values > (mean + threshold * std)
|
| 271 |
+
return anomalies
|
| 272 |
|
| 273 |
+
def anomaly_detection(X_emotions, X_embeddings, epochs=200, batch_size=8, patience=3):
|
| 274 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 275 |
|
| 276 |
+
# Normalize emotions
|
| 277 |
+
scaler_emotions = MinMaxScaler()
|
| 278 |
+
X_emotions_scaled = scaler_emotions.fit_transform(X_emotions)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
+
# Process emotions
|
| 281 |
+
X_emotions_scaled = torch.FloatTensor(X_emotions_scaled).to(device)
|
| 282 |
+
if X_emotions_scaled.dim() == 2:
|
| 283 |
+
X_emotions_scaled = X_emotions_scaled.unsqueeze(0)
|
| 284 |
|
| 285 |
+
model_emotions = Autoencoder(input_size=X_emotions_scaled.shape[2]).to(device)
|
| 286 |
criterion = nn.MSELoss()
|
| 287 |
+
optimizer_emotions = optim.Adam(model_emotions.parameters())
|
| 288 |
|
| 289 |
+
# Train emotions model
|
| 290 |
for epoch in range(epochs):
|
| 291 |
+
model_emotions.train()
|
| 292 |
+
optimizer_emotions.zero_grad()
|
| 293 |
+
output_emotions = model_emotions(X_emotions_scaled)
|
| 294 |
+
loss_emotions = criterion(output_emotions, X_emotions_scaled)
|
| 295 |
+
loss_emotions.backward()
|
| 296 |
+
optimizer_emotions.step()
|
| 297 |
+
|
| 298 |
+
# Process facial embeddings
|
| 299 |
+
X_embeddings = torch.FloatTensor(X_embeddings).to(device)
|
| 300 |
+
if X_embeddings.dim() == 2:
|
| 301 |
+
X_embeddings = X_embeddings.unsqueeze(0)
|
| 302 |
+
|
| 303 |
+
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device)
|
| 304 |
+
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
| 305 |
+
|
| 306 |
+
# Train embeddings model
|
| 307 |
+
for epoch in range(epochs):
|
| 308 |
+
model_embeddings.train()
|
| 309 |
+
optimizer_embeddings.zero_grad()
|
| 310 |
+
output_embeddings = model_embeddings(X_embeddings)
|
| 311 |
+
loss_embeddings = criterion(output_embeddings, X_embeddings)
|
| 312 |
+
loss_embeddings.backward()
|
| 313 |
+
optimizer_embeddings.step()
|
| 314 |
+
|
| 315 |
+
# Compute MSE for emotions and embeddings
|
| 316 |
+
model_emotions.eval()
|
| 317 |
+
model_embeddings.eval()
|
| 318 |
with torch.no_grad():
|
| 319 |
+
reconstructed_emotions = model_emotions(X_emotions_scaled).cpu().numpy()
|
| 320 |
+
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
+
mse_emotions = np.mean(np.power(X_emotions_scaled.cpu().numpy() - reconstructed_emotions, 2), axis=2).squeeze()
|
| 323 |
+
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
+
return mse_emotions, mse_embeddings
|
| 326 |
|
| 327 |
+
def plot_mse(df, mse_values, title, color='blue', time_threshold=3, anomaly_threshold=4):
|
| 328 |
+
plt.figure(figsize=(16, 8), dpi=500)
|
| 329 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
+
if 'Seconds' not in df.columns:
|
| 332 |
+
df['Seconds'] = df['Timecode'].apply(
|
| 333 |
+
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
+
# Ensure df and mse_values have the same length and remove NaN values
|
| 336 |
+
min_length = min(len(df), len(mse_values))
|
| 337 |
+
df = df.iloc[:min_length]
|
| 338 |
+
mse_values = mse_values[:min_length]
|
| 339 |
|
| 340 |
+
# Remove NaN values
|
| 341 |
+
mask = ~np.isnan(mse_values)
|
| 342 |
+
df = df[mask]
|
| 343 |
+
mse_values = mse_values[mask]
|
|
|
|
| 344 |
|
| 345 |
+
mean = pd.Series(mse_values).rolling(window=10).mean()
|
| 346 |
+
std = pd.Series(mse_values).rolling(window=10).std()
|
| 347 |
+
median = np.median(mse_values)
|
| 348 |
|
| 349 |
+
ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5)
|
| 350 |
+
ax.plot(df['Seconds'], mean, color=color, linewidth=2)
|
| 351 |
+
ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.2)
|
| 352 |
|
| 353 |
+
# Add median line
|
| 354 |
+
ax.axhline(y=median, color='black', linestyle='--', label='Baseline')
|
| 355 |
+
ax.text(ax.get_xlim()[1], median, 'Baseline', verticalalignment='center', horizontalalignment='left', color='black')
|
| 356 |
|
| 357 |
+
# Add threshold line
|
| 358 |
+
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
|
| 359 |
+
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
|
| 360 |
+
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')
|
| 361 |
|
| 362 |
+
anomalies = determine_anomalies(mse_values, anomaly_threshold)
|
| 363 |
+
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
|
| 364 |
|
| 365 |
+
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=25, zorder=5)
|
|
|
|
|
|
|
| 366 |
|
| 367 |
+
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
|
| 368 |
+
df['Seconds'].iloc[anomalies],
|
| 369 |
+
mse_values[anomalies]))
|
| 370 |
+
anomaly_data.sort(key=lambda x: x[1])
|
|
|
|
| 371 |
|
| 372 |
grouped_anomalies = []
|
| 373 |
current_group = []
|
|
|
|
| 380 |
if current_group:
|
| 381 |
grouped_anomalies.append(current_group)
|
| 382 |
|
| 383 |
+
for group in grouped_anomalies:
|
| 384 |
+
start_sec = group[0][1]
|
| 385 |
+
end_sec = group[-1][1]
|
| 386 |
+
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
|
| 387 |
+
facecolor='red', alpha=0.3, zorder=1)
|
| 388 |
+
ax.add_patch(rect)
|
| 389 |
+
|
| 390 |
for group in grouped_anomalies:
|
| 391 |
highest_mse_anomaly = max(group, key=lambda x: x[2])
|
| 392 |
timecode, sec, mse = highest_mse_anomaly
|
| 393 |
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
|
| 394 |
+
ha='center', fontsize=6, color='red')
|
| 395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
max_seconds = df['Seconds'].max()
|
| 397 |
num_ticks = 100
|
| 398 |
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
| 399 |
+
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
|
|
|
| 400 |
|
| 401 |
ax.set_xticks(tick_locations)
|
| 402 |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
| 403 |
|
| 404 |
+
ax.set_xlabel('Timecode')
|
| 405 |
ax.set_ylabel('Mean Squared Error')
|
| 406 |
ax.set_title(title)
|
| 407 |
|
| 408 |
ax.grid(True, linestyle='--', alpha=0.7)
|
| 409 |
+
ax.legend()
|
| 410 |
+
plt.tight_layout()
|
| 411 |
+
plt.close()
|
| 412 |
+
return fig, anomaly_frames
|
| 413 |
+
|
| 414 |
+
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
|
| 415 |
+
plt.figure(figsize=(16, 8), dpi=500)
|
| 416 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
| 417 |
+
|
| 418 |
+
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
|
| 419 |
+
ax.set_xlabel('Mean Squared Error')
|
| 420 |
+
ax.set_ylabel('Number of Samples')
|
| 421 |
+
ax.set_title(title)
|
| 422 |
+
|
| 423 |
+
mean = np.mean(mse_values)
|
| 424 |
+
std = np.std(mse_values)
|
| 425 |
+
threshold = mean + anomaly_threshold * std
|
| 426 |
+
|
| 427 |
+
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
|
| 428 |
+
|
| 429 |
+
# Move annotation to the bottom and away from the line
|
| 430 |
+
ax.annotate(f'Threshold: {anomaly_threshold:.1f}',
|
| 431 |
+
xy=(threshold, ax.get_ylim()[0]),
|
| 432 |
+
xytext=(0, -20),
|
| 433 |
+
textcoords='offset points',
|
| 434 |
+
ha='center', va='top',
|
| 435 |
+
bbox=dict(boxstyle='round,pad=0.5', fc='white', ec='none', alpha=0.7),
|
| 436 |
+
color='red')
|
| 437 |
+
|
| 438 |
+
plt.tight_layout()
|
| 439 |
+
plt.close()
|
| 440 |
+
return fig
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
def plot_emotion(df, emotion, color, anomaly_threshold):
|
| 444 |
+
plt.figure(figsize=(16, 8), dpi=500)
|
| 445 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
| 446 |
+
|
| 447 |
+
df['Seconds'] = df['Timecode'].apply(
|
| 448 |
+
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 449 |
+
|
| 450 |
+
mean = df[emotion].rolling(window=10).mean()
|
| 451 |
+
std = df[emotion].rolling(window=10).std()
|
| 452 |
+
median = df[emotion].median()
|
| 453 |
+
|
| 454 |
+
ax.scatter(df['Seconds'], df[emotion], color=color, alpha=0.3, s=5)
|
| 455 |
+
ax.plot(df['Seconds'], mean, color=color, linewidth=2)
|
| 456 |
+
ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.2)
|
| 457 |
+
|
| 458 |
+
# Add median line
|
| 459 |
+
ax.axhline(y=median, color='black', linestyle='--', label='Baseline')
|
| 460 |
+
ax.text(ax.get_xlim()[1], median, 'Baseline', verticalalignment='center', horizontalalignment='left', color='black')
|
| 461 |
+
|
| 462 |
+
# Convert anomaly threshold to probability
|
| 463 |
+
probability_threshold = (anomaly_threshold - 1) / 6 # Convert 1-7 scale to 0-1 probability
|
| 464 |
+
|
| 465 |
+
# Add threshold line and detect anomalies
|
| 466 |
+
ax.axhline(y=probability_threshold, color='red', linestyle='--', label=f'Threshold: {probability_threshold:.2f}')
|
| 467 |
+
ax.text(ax.get_xlim()[1], probability_threshold, f'Threshold: {probability_threshold:.2f}',
|
| 468 |
+
verticalalignment='center', horizontalalignment='left', color='red')
|
| 469 |
+
|
| 470 |
+
# Detect and highlight anomalies
|
| 471 |
+
anomalies = df[emotion] >= probability_threshold
|
| 472 |
+
ax.scatter(df['Seconds'][anomalies], df[emotion][anomalies], color='red', s=25, zorder=5)
|
| 473 |
+
|
| 474 |
+
max_seconds = df['Seconds'].max()
|
| 475 |
+
num_ticks = 100
|
| 476 |
+
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
| 477 |
+
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
| 478 |
+
|
| 479 |
+
ax.set_xticks(tick_locations)
|
| 480 |
+
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
| 481 |
+
|
| 482 |
+
ax.set_xlabel('Timecode')
|
| 483 |
+
ax.set_ylabel('Emotion Probability')
|
| 484 |
+
ax.set_title(f"{emotion.capitalize()} Over Time")
|
| 485 |
+
|
| 486 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
| 487 |
+
ax.legend()
|
| 488 |
plt.tight_layout()
|
| 489 |
plt.close()
|
| 490 |
return fig
|
| 491 |
|
| 492 |
+
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=500):
|
| 493 |
face_samples = {"most_frequent": [], "others": []}
|
| 494 |
for cluster_folder in sorted(os.listdir(organized_faces_folder)):
|
| 495 |
if cluster_folder.startswith("person_"):
|
|
|
|
| 498 |
if face_files:
|
| 499 |
cluster_id = int(cluster_folder.split('_')[1])
|
| 500 |
if cluster_id == largest_cluster:
|
| 501 |
+
for i, sample in enumerate(face_files[:max_samples]):
|
| 502 |
face_path = os.path.join(person_folder, sample)
|
| 503 |
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
|
| 504 |
face_img = cv2.imread(face_path)
|
|
|
|
| 506 |
small_face = cv2.resize(face_img, (160, 160))
|
| 507 |
cv2.imwrite(output_path, small_face)
|
| 508 |
face_samples["most_frequent"].append(output_path)
|
| 509 |
+
if len(face_samples["most_frequent"]) >= max_samples:
|
| 510 |
+
break
|
| 511 |
else:
|
| 512 |
+
remaining_samples = max_samples - len(face_samples["others"])
|
| 513 |
+
if remaining_samples > 0:
|
| 514 |
+
for i, sample in enumerate(face_files[:remaining_samples]):
|
| 515 |
+
face_path = os.path.join(person_folder, sample)
|
| 516 |
+
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
|
| 517 |
+
face_img = cv2.imread(face_path)
|
| 518 |
+
if face_img is not None:
|
| 519 |
+
small_face = cv2.resize(face_img, (160, 160))
|
| 520 |
+
cv2.imwrite(output_path, small_face)
|
| 521 |
+
face_samples["others"].append(output_path)
|
| 522 |
+
if len(face_samples["others"]) >= max_samples:
|
| 523 |
+
break
|
| 524 |
return face_samples
|
| 525 |
|
| 526 |
+
def process_video(video_path, anomaly_threshold, desired_fps, progress=gr.Progress()):
|
| 527 |
+
start_time = time.time()
|
| 528 |
output_folder = "output"
|
| 529 |
os.makedirs(output_folder, exist_ok=True)
|
| 530 |
+
batch_size = 16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
|
| 532 |
with tempfile.TemporaryDirectory() as temp_dir:
|
| 533 |
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
|
|
|
|
| 554 |
progress, batch_size)
|
| 555 |
|
| 556 |
if not aligned_face_paths:
|
| 557 |
+
return ("No faces were extracted from the video.",) + (None,) * 10
|
|
|
|
| 558 |
|
| 559 |
progress(0.6, "Clustering faces")
|
| 560 |
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
|
| 561 |
clusters = cluster_faces(embeddings)
|
| 562 |
+
num_clusters = len(set(clusters))
|
| 563 |
|
| 564 |
progress(0.7, "Organizing faces")
|
| 565 |
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
|
|
|
|
| 568 |
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
|
| 569 |
original_fps, temp_dir, video_duration)
|
| 570 |
|
| 571 |
+
# Add 'Seconds' column to df
|
| 572 |
+
df['Seconds'] = df['Timecode'].apply(
|
| 573 |
+
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 574 |
+
|
| 575 |
progress(0.85, "Getting face samples")
|
| 576 |
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
| 577 |
|
| 578 |
progress(0.9, "Performing anomaly detection")
|
| 579 |
+
emotion_columns = ['angry', 'disgust', 'fear', 'sad', 'happy']
|
| 580 |
+
embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
|
| 581 |
+
|
| 582 |
+
X_emotions = df[emotion_columns].values
|
| 583 |
+
X_embeddings = df[embedding_columns].values
|
| 584 |
|
| 585 |
try:
|
| 586 |
+
mse_emotions, mse_embeddings = anomaly_detection(X_emotions, X_embeddings, batch_size=batch_size)
|
|
|
|
| 587 |
|
| 588 |
progress(0.95, "Generating plots")
|
| 589 |
+
mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Embeddings",
|
| 590 |
+
color='green',
|
| 591 |
+
anomaly_threshold=anomaly_threshold)
|
| 592 |
+
mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Embeddings",
|
| 593 |
+
anomaly_threshold, color='green')
|
| 594 |
|
| 595 |
+
# Add emotion plots
|
| 596 |
+
emotion_plots = []
|
| 597 |
+
for emotion, color in zip(emotion_columns, ['purple', 'brown', 'green', 'orange', 'darkblue']):
|
| 598 |
+
emotion_plot = plot_emotion(df, emotion, color, anomaly_threshold)
|
| 599 |
+
emotion_plots.append(emotion_plot)
|
| 600 |
+
|
| 601 |
+
mse_var_emotions = np.var(mse_emotions)
|
| 602 |
+
mse_var_embeddings = np.var(mse_embeddings)
|
| 603 |
|
| 604 |
except Exception as e:
|
| 605 |
print(f"Error details: {str(e)}")
|
| 606 |
+
return (f"Error in anomaly detection: {str(e)}",) + (None,) * 15
|
|
|
|
| 607 |
|
| 608 |
progress(1.0, "Preparing results")
|
| 609 |
results = f"Number of persons/clusters detected: {num_clusters}\n\n"
|
|
|
|
| 611 |
for cluster_id in range(num_clusters):
|
| 612 |
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n"
|
| 613 |
|
| 614 |
+
end_time = time.time()
|
| 615 |
+
execution_time = end_time - start_time
|
| 616 |
+
|
| 617 |
+
# Load anomaly frames as images
|
| 618 |
+
anomaly_faces_embeddings = [
|
| 619 |
+
cv2.imread(os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg"))
|
| 620 |
+
for frame in anomaly_frames_embeddings
|
| 621 |
+
if os.path.exists(os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg"))
|
| 622 |
+
]
|
| 623 |
+
anomaly_faces_embeddings = [cv2.cvtColor(face, cv2.COLOR_BGR2RGB) for face in anomaly_faces_embeddings if face is not None]
|
| 624 |
+
|
| 625 |
return (
|
| 626 |
+
execution_time,
|
| 627 |
results,
|
| 628 |
+
df,
|
| 629 |
+
mse_embeddings,
|
| 630 |
+
mse_emotions,
|
| 631 |
+
mse_plot_embeddings,
|
| 632 |
+
mse_histogram_embeddings,
|
| 633 |
*emotion_plots,
|
| 634 |
face_samples["most_frequent"],
|
| 635 |
+
face_samples["others"],
|
| 636 |
+
anomaly_faces_embeddings,
|
| 637 |
+
aligned_faces_folder
|
| 638 |
)
|
| 639 |
|
| 640 |
+
with gr.Blocks() as iface:
|
| 641 |
+
gr.Markdown("# Facial Expressions Anomaly Detection")
|
| 642 |
+
|
| 643 |
+
with gr.Row():
|
| 644 |
+
video_input = gr.Video()
|
| 645 |
+
anomaly_threshold = gr.Slider(minimum=1, maximum=7, step=0.1, value=4.5, label="Anomaly Detection Threshold")
|
| 646 |
+
fps_slider = gr.Slider(minimum=10, maximum=20, step=5, value=20, label="Frames Per Second")
|
| 647 |
+
|
| 648 |
+
process_btn = gr.Button("Process Video")
|
| 649 |
+
|
| 650 |
+
execution_time = gr.Number(label="Execution Time (seconds)")
|
| 651 |
+
results_text = gr.Textbox(label="Anomaly Detection Results")
|
| 652 |
+
|
| 653 |
+
anomaly_frames_embeddings = gr.Gallery(label="Anomaly Frames (Facial Embeddings)", columns=6, rows=2, height="auto")
|
| 654 |
+
|
| 655 |
+
mse_embeddings_plot = gr.Plot(label="MSE: Facial Embeddings")
|
| 656 |
+
mse_embeddings_hist = gr.Plot(label="MSE Distribution: Facial Embeddings")
|
| 657 |
+
|
| 658 |
+
# Add emotion plots
|
| 659 |
+
emotion_plots = [gr.Plot(label=f"{emotion.capitalize()} Over Time") for emotion in ['angry', 'disgust', 'fear', 'sad', 'happy']]
|
| 660 |
+
|
| 661 |
+
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
|
| 662 |
+
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
|
| 663 |
+
|
| 664 |
+
# Hidden components to store intermediate results
|
| 665 |
+
df_store = gr.State()
|
| 666 |
+
mse_emotions_store = gr.State()
|
| 667 |
+
mse_embeddings_store = gr.State()
|
| 668 |
+
aligned_faces_folder_store = gr.State()
|
| 669 |
+
|
| 670 |
+
process_btn.click(
|
| 671 |
+
process_video,
|
| 672 |
+
inputs=[video_input, anomaly_threshold, fps_slider],
|
| 673 |
+
outputs=[
|
| 674 |
+
execution_time, results_text, df_store, mse_embeddings_store, mse_emotions_store,
|
| 675 |
+
mse_embeddings_plot, mse_embeddings_hist,
|
| 676 |
+
*emotion_plots,
|
| 677 |
+
face_samples_most_frequent, face_samples_others, anomaly_frames_embeddings,
|
| 678 |
+
aligned_faces_folder_store
|
| 679 |
+
]
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
if __name__ == "__main__":
|
| 683 |
+
iface.launch()
|
|
|