rasyosef's picture
Update app.py
a2f53e0 verified
raw
history blame
3.2 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline
from threading import Thread
model_id = "rasyosef/Llama-3.2-180M-Amharic-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
llama_am = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Function that accepts a prompt and generates text using the phi2 pipeline
def generate(message, chat_history, max_new_tokens=256):
history = []
for sent, received in chat_history:
history.append({"role": "user", "content": sent})
history.append({"role": "assistant", "content": received})
history.append({"role": "user", "content": message})
#print(history)
if len(tokenizer.apply_chat_template(history)) > 512:
yield "chat history is too long"
else:
# Streamer
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0)
thread = Thread(target=llama_am,
kwargs={
"text_inputs":history,
"max_new_tokens":max_new_tokens,
"repetition_penalty":1.1,
"streamer":streamer
}
)
thread.start()
generated_text = ""
for word in streamer:
generated_text += word
response = generated_text.strip()
yield response
# Chat interface with gradio
with gr.Blocks() as demo:
gr.Markdown("""
# Llama 3.2 180M Amharic Chatbot Demo
This chatbot was created using [Llama-3.2-180M-Amharic-Instruct](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic-Instruct), a finetuned version of my 180 million parameter [Llama 3.2 180M Amharic](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic) transformer model.
""")
tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")
chatbot = gr.ChatInterface(
chatbot=gr.Chatbot(height=400),
fn=generate,
additional_inputs=[tokens_slider],
stop_btn=None,
cache_examples=False,
examples=[
["የኢትዮጵያ ዋና ከተማ ስም ምንድን ነው?"],
["የኢትዮጵያ የመጨረሻው ንጉስ ማን ነበሩ?"],
["የፈረንሳይ ዋና ከተማ ስም ምንድን ነው?"],
["አሁን የአሜሪካ ፕሬዚዳንት ማን ነው?"],
["የእስራኤል ጠቅላይ ሚንስትር ማን ነው?"],
["ሶስት የአፍሪካ ሀገራት ጥቀስልኝ"],
["3 የአሜሪካ መሪዎችን ስም ጥቀስ"],
["5 የአሜሪካ ከተማዎችን ጥቀስ"],
["አምስት የአውሮፓ ሀገራት ጥቀስልኝ"],
["የኢትዮጵያ ፕሬዝዳንት ማን ነው?"],
["በ ዓለም ላይ ያሉትን 7 አህጉራት ንገረኝ"]
]
)
demo.queue().launch(debug=True)