File size: 3,195 Bytes
8885176
 
 
 
 
 
c148a01
22777ab
 
 
 
 
 
 
 
 
 
 
 
8885176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c148a01
8885176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f53e0
8885176
a2f53e0
8885176
 
 
 
 
 
 
 
 
7a9d2b1
8885176
 
 
eb1e4df
 
7e77064
eb1e4df
 
 
 
 
 
8885176
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline
from threading import Thread

model_id = "rasyosef/Llama-3.2-180M-Amharic-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

llama_am = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id
  )

# Function that accepts a prompt and generates text using the phi2 pipeline
def generate(message, chat_history, max_new_tokens=256):

  history = []

  for sent, received in chat_history:
    history.append({"role": "user", "content": sent})
    history.append({"role": "assistant", "content": received})

  history.append({"role": "user", "content": message})
  #print(history)

  if len(tokenizer.apply_chat_template(history)) > 512:
    yield "chat history is too long"
  else:
    # Streamer
    streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0)
    thread = Thread(target=llama_am,
                    kwargs={
                        "text_inputs":history,
                        "max_new_tokens":max_new_tokens,
                        "repetition_penalty":1.1,
                        "streamer":streamer
                        }
                    )
    thread.start()

    generated_text = ""
    for word in streamer:
      generated_text += word
      response = generated_text.strip()

      yield response

# Chat interface with gradio
with gr.Blocks() as demo:
  gr.Markdown("""
  # Llama 3.2 180M Amharic Chatbot Demo

  This chatbot was created using [Llama-3.2-180M-Amharic-Instruct](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic-Instruct), a finetuned version of my 180 million parameter [Llama 3.2 180M Amharic](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic) transformer model.
  """)

  tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")

  chatbot = gr.ChatInterface(
    chatbot=gr.Chatbot(height=400),
    fn=generate,
    additional_inputs=[tokens_slider],
    stop_btn=None,
    cache_examples=False,
    examples=[
        ["የኢትዮጵያ ዋና ከተማ ስም ምንድን ነው?"],
        ["የኢትዮጵያ የመጨረሻው ንጉስ ማን ነበሩ?"],
        ["የፈረንሳይ ዋና ከተማ ስም ምንድን ነው?"],
        ["አሁን የአሜሪካ ፕሬዚዳንት ማን ነው?"],
        ["የእስራኤል ጠቅላይ ሚንስትር ማን ነው?"],
        ["ሶስት የአፍሪካ ሀገራት ጥቀስልኝ"],
        ["3 የአሜሪካ መሪዎችን ስም ጥቀስ"],
        ["5 የአሜሪካ ከተማዎችን ጥቀስ"],
        ["አምስት የአውሮፓ ሀገራት ጥቀስልኝ"],
        ["የኢትዮጵያ ፕሬዝዳንት ማን ነው?"],
        ["በ ዓለም ላይ ያሉትን 7 አህጉራት ንገረኝ"]
      ]
  )

demo.queue().launch(debug=True)