File size: 2,424 Bytes
d836ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
007b4ac
 
 
d836ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
4431756
7c9c02d
d836ac3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# import gradio as gr
# import random
# from datasets import load_dataset
# from transformers import pipeline

# # Load Hindi Poetry Dataset
# dataset = load_dataset("rahul7star/hindi-poetry")
# poems = dataset["train"]

# def get_random_poem():
#     poem = random.choice(poems)
#     return f"**{poem['poet']} ({poem['category']})**\n\n{poem['poem']}"

# # Load Text Generation Model
# # Load Text Generation Model
# text_generator = pipeline("text-generation", model="rahul7star/hindi_poetry_language_model")


# def generate_poem(prompt):
#     result = text_generator(prompt, max_length=100, do_sample=True, temperature=0.7)
#     return result[0]["generated_text"]

# # Gradio UI
# demo = gr.Interface(
#     title="📜 हिंदी कविता जनरेटर",
#     description="देखें हिंदी कविताएँ और अपनी खुद की कविता बनाएं!",
#     theme="huggingface",
#     fn=generate_poem,
#     inputs=gr.Textbox(placeholder="अपनी कविता की शुरुआत लिखें...", label="कविता की शुरुआत"),
#     outputs=gr.Textbox(label="उत्पन्न कविता"),
#     examples=[["प्रकृति की सुंदरता"], ["प्रेम की निशानी"]],
#     live=True
# )

# # Add button to display a random poem
# demo.launch(share=True)
import gradio as gr
from fastai.text.all import load_learner
from huggingface_hub import hf_hub_download
# Download model and tokenizer from HF
model_path = hf_hub_download("rahul7star/hindi_poetry_language_model", filename="model.pkl")
#tokenizer_path = hf_hub_download("rahul7star/Rahul-FineTunedLLM-v03", filename="tokenizer/tokenizer.pkl")

# Load the learner from Hugging Face
learn = load_learner(model_path)

# Step 9: Define Gradio interface to generate poems based on theme
def generate_poem_gradio(theme):
    # Generate a poem based on the theme input
    text = learn.predict(theme)[0]
    return text

# Define the Gradio interface
import gradio as gr

iface = gr.Interface(
    fn=generate_poem_gradio,  # Function to call for generating poems
    inputs="text",  # User input will be a text field (theme)
    outputs="text",  # Output will be the generated poem
    title="Hindi Poem Generator",
    description="Enter a theme (in Hindi), and get a poem generated based on that theme."
)