rahul7star commited on
Commit
d836ac3
·
verified ·
1 Parent(s): e110e28

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -34
app.py CHANGED
@@ -1,36 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- import random
3
- from datasets import load_dataset
4
- from transformers import pipeline
5
-
6
- # Load Hindi Poetry Dataset
7
- dataset = load_dataset("rahul7star/hindi-poetry")
8
- poems = dataset["train"]
9
-
10
- def get_random_poem():
11
- poem = random.choice(poems)
12
- return f"**{poem['poet']} ({poem['category']})**\n\n{poem['poem']}"
13
-
14
- # Load Text Generation Model
15
- # Load Text Generation Model
16
- text_generator = pipeline("text-generation", model="rahul7star/hindi_poetry_language_model")
17
-
18
-
19
- def generate_poem(prompt):
20
- result = text_generator(prompt, max_length=100, do_sample=True, temperature=0.7)
21
- return result[0]["generated_text"]
22
-
23
- # Gradio UI
24
- demo = gr.Interface(
25
- title="📜 हिंदी कविता जनरेटर",
26
- description="देखें हिंदी कविताएँ और अपनी खुद की कविता बनाएं!",
27
- theme="huggingface",
28
- fn=generate_poem,
29
- inputs=gr.Textbox(placeholder="अपनी कविता की शुरुआत लिखें...", label="कविता की शुरुआत"),
30
- outputs=gr.Textbox(label="उत्पन्न कविता"),
31
- examples=[["प्रकृति की सुंदरता"], ["प्रेम की निशानी"]],
32
- live=True
33
- )
34
 
35
- # Add button to display a random poem
36
- demo.launch(share=True)
 
 
 
 
 
 
1
+ # import gradio as gr
2
+ # import random
3
+ # from datasets import load_dataset
4
+ # from transformers import pipeline
5
+
6
+ # # Load Hindi Poetry Dataset
7
+ # dataset = load_dataset("rahul7star/hindi-poetry")
8
+ # poems = dataset["train"]
9
+
10
+ # def get_random_poem():
11
+ # poem = random.choice(poems)
12
+ # return f"**{poem['poet']} ({poem['category']})**\n\n{poem['poem']}"
13
+
14
+ # # Load Text Generation Model
15
+ # # Load Text Generation Model
16
+ # text_generator = pipeline("text-generation", model="rahul7star/hindi_poetry_language_model")
17
+
18
+
19
+ # def generate_poem(prompt):
20
+ # result = text_generator(prompt, max_length=100, do_sample=True, temperature=0.7)
21
+ # return result[0]["generated_text"]
22
+
23
+ # # Gradio UI
24
+ # demo = gr.Interface(
25
+ # title="📜 हिंदी कविता जनरेटर",
26
+ # description="देखें हिंदी कविताएँ और अपनी खुद की कविता बनाएं!",
27
+ # theme="huggingface",
28
+ # fn=generate_poem,
29
+ # inputs=gr.Textbox(placeholder="अपनी कविता की शुरुआत लिखें...", label="कविता की शुरुआत"),
30
+ # outputs=gr.Textbox(label="उत्पन्न कविता"),
31
+ # examples=[["प्रकृति की सुंदरता"], ["प्रेम की निशानी"]],
32
+ # live=True
33
+ # )
34
+
35
+ # # Add button to display a random poem
36
+ # demo.launch(share=True)
37
+
38
+ # Download model and tokenizer from HF
39
+ model_path = hf_hub_download("rahul7star/hindi_poetry_language_model", filename="model.pkl")
40
+ #tokenizer_path = hf_hub_download("rahul7star/Rahul-FineTunedLLM-v03", filename="tokenizer/tokenizer.pkl")
41
+
42
+ # Load the learner from Hugging Face
43
+ learn = load_learner(model_path)
44
+
45
+ # Step 9: Define Gradio interface to generate poems based on theme
46
+ def generate_poem_gradio(theme):
47
+ # Generate a poem based on the theme input
48
+ text = learn.predict(theme)[0]
49
+ return text
50
+
51
+ # Define the Gradio interface
52
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
+ iface = gr.Interface(
55
+ fn=generate_poem_gradio, # Function to call for generating poems
56
+ inputs="text", # User input will be a text field (theme)
57
+ outputs="text", # Output will be the generated poem
58
+ title="Hindi Poem Generator",
59
+ description="Enter a theme (in Hindi), and get a poem generated based on that theme."
60
+ )