Spaces:
Running
Running
Adding a simple gradio code for creating a leaderboard
#1
by
michaelsh
- opened
import gradio as gr
import plotly.graph_objects as go
import numpy as np
import pandas as pd
def create_sota_plot():
# State-of-the-art models data
sota_models = {
'SIFT + FVs': (2012, 53),
'AlexNet': (2012.5, 65),
'SPPNet': (2014.5, 74),
'Inception V3': (2015.5, 81),
'NASNET-A(6)': (2017, 82.7),
'CoAtNet-7': (2021.5, 90.88),
'': (2022, 87.79), # Last point
'': (2022.2, 87.73) # Final value shown
}
# Extract data for SOTA models
sota_years = [year for year, _ in sota_models.values() if year != '']
sota_accuracy = [acc for _, acc in sota_models.values() if acc != '']
sota_labels = [name for name in sota_models.keys() if name != '']
# Generate synthetic "other models" data (gray points)
np.random.seed(42)
n_other = 300
other_years = np.random.uniform(2010, 2023, n_other)
# Create a distribution that's mostly below SOTA but with some variance
other_accuracy = []
for year in other_years:
# Find approximate SOTA accuracy for this year
sota_at_year = np.interp(year, sota_years[:len(sota_accuracy)], sota_accuracy[:len(sota_accuracy)])
# Add models mostly below SOTA with some variance
if year < 2012:
acc = np.random.normal(45, 8)
else:
acc = np.random.normal(sota_at_year - 10, 5)
# Some models can be close to SOTA
if np.random.random() < 0.1:
acc = sota_at_year - np.random.uniform(0, 3)
other_accuracy.append(max(30, min(92, acc))) # Clip to reasonable range
# Create the plot
fig = go.Figure()
# Add other models (gray scatter points)
fig.add_trace(go.Scatter(
x=other_years,
y=other_accuracy,
mode='markers',
name='Other models',
marker=dict(
color='lightgray',
size=6,
opacity=0.5
),
hovertemplate='Year: %{x:.1f}<br>Accuracy: %{y:.1f}%<extra></extra>'
))
# Add SOTA models line
fig.add_trace(go.Scatter(
x=sota_years[:len(sota_accuracy)],
y=sota_accuracy,
mode='lines+markers',
name='State-of-the-art models',
line=dict(color='#00CED1', width=3),
marker=dict(size=10, color='#00CED1'),
hovertemplate='%{text}<br>Year: %{x:.1f}<br>Accuracy: %{y:.1f}%<extra></extra>',
text=sota_labels[:len(sota_accuracy)]
))
# Add labels for SOTA models
for i, (name, (year, acc)) in enumerate(sota_models.items()):
if name and i < len(sota_accuracy): # Only label points with names
fig.add_annotation(
x=year,
y=acc,
text=name,
showarrow=False,
yshift=15,
font=dict(size=12)
)
# Add the final accuracy values
fig.add_annotation(
x=2022,
y=87.79,
text="87.79",
showarrow=False,
xshift=30,
font=dict(size=12, weight='bold')
)
fig.add_annotation(
x=2022.2,
y=87.73,
text="87.73",
showarrow=False,
xshift=30,
yshift=-10,
font=dict(size=12)
)
# Update layout
fig.update_layout(
title='Evolution of Model Performance on ImageNet',
xaxis_title='Year',
yaxis_title='TOP-1 ACCURACY',
xaxis=dict(
range=[2010, 2023],
tickmode='linear',
tick0=2012,
dtick=2,
showgrid=True,
gridcolor='lightgray'
),
yaxis=dict(
range=[35, 100],
tickmode='linear',
tick0=40,
dtick=10,
showgrid=True,
gridcolor='lightgray'
),
plot_bgcolor='white',
paper_bgcolor='white',
height=500,
legend=dict(
yanchor="bottom",
y=0.01,
xanchor="center",
x=0.5,
orientation="h"
)
)
return fig
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# State-of-the-Art Models Timeline")
gr.Markdown(
"This visualization shows the evolution of state-of-the-art models' performance over time, similar to the ImageNet benchmark progression.")
plot = gr.Plot(label="Model Performance Evolution")
# Create plot on load
demo.load(fn=create_sota_plot, outputs=plot)
# Add interactive controls
with gr.Row():
refresh_btn = gr.Button("Refresh Plot")
refresh_btn.click(fn=create_sota_plot, outputs=plot)
gr.Markdown("""
### About this visualization:
- **Cyan line**: State-of-the-art models showing the progression of best performance
- **Gray dots**: Other models representing the broader research landscape
- The plot shows how breakthrough models like AlexNet, Inception, and NASNET pushed the boundaries
- Notice the rapid improvement from 2012-2018, followed by more incremental gains
""")
if __name__ == "__main__":
demo.launch()
Sure perhaps you can create a Space for this to showcase how the app looks like.
again it's only a draft