Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import json | |
import math | |
import os | |
import traceback | |
from io import BytesIO | |
from typing import Any, Dict, List, Optional, Tuple | |
import re | |
import time | |
from threading import Thread | |
from io import BytesIO | |
import uuid | |
import tempfile | |
import gradio as gr | |
import requests | |
import torch | |
from PIL import Image | |
import fitz | |
import numpy as np | |
from transformers import AutoModelForCausalLM, AutoTokenizer, Qwen2VLImageProcessor | |
from reportlab.lib.pagesizes import A4 | |
from reportlab.lib.styles import getSampleStyleSheet | |
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer | |
from reportlab.lib.units import inch | |
# --- Constants and Model Setup --- | |
MAX_INPUT_TOKEN_LENGTH = 4096 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
print("torch.__version__ =", torch.__version__) | |
print("torch.version.cuda =", torch.version.cuda) | |
print("cuda available:", torch.cuda.is_available()) | |
print("cuda device count:", torch.cuda.device_count()) | |
if torch.cuda.is_available(): | |
print("current device:", torch.cuda.current_device()) | |
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
print("Using device:", device) | |
# --- Model Loading: tencent/POINTS-Reader --- | |
MODEL_PATH = 'tencent/POINTS-Reader' | |
print(f"Loading model: {MODEL_PATH}") | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_PATH, | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
device_map='auto' | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) | |
image_processor = Qwen2VLImageProcessor.from_pretrained(MODEL_PATH) | |
print("Model loaded successfully.") | |
# --- PDF Generation and Preview Utility Function --- | |
def generate_and_preview_pdf(image: Image.Image, text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str): | |
""" | |
Generates a PDF, saves it, and then creates image previews of its pages. | |
Returns the path to the PDF and a list of paths to the preview images. | |
""" | |
if image is None or not text_content or not text_content.strip(): | |
raise gr.Error("Cannot generate PDF. Image or text content is missing.") | |
# --- 1. Generate the PDF --- | |
temp_dir = tempfile.gettempdir() | |
pdf_filename = os.path.join(temp_dir, f"output_{uuid.uuid4()}.pdf") | |
doc = SimpleDocTemplate( | |
pdf_filename, | |
pagesize=A4, | |
rightMargin=inch, leftMargin=inch, | |
topMargin=inch, bottomMargin=inch | |
) | |
styles = getSampleStyleSheet() | |
style_normal = styles["Normal"] | |
style_normal.fontSize = int(font_size) | |
style_normal.leading = int(font_size) * line_spacing | |
style_normal.alignment = {"Left": 0, "Center": 1, "Right": 2, "Justified": 4}[alignment] | |
story = [] | |
img_buffer = BytesIO() | |
image.save(img_buffer, format='PNG') | |
img_buffer.seek(0) | |
page_width, _ = A4 | |
available_width = page_width - 2 * inch | |
image_widths = { | |
"Small": available_width * 0.3, | |
"Medium": available_width * 0.6, | |
"Large": available_width * 0.9, | |
} | |
img_width = image_widths[image_size] | |
img = RLImage(img_buffer, width=img_width, height=image.height * (img_width / image.width)) | |
story.append(img) | |
story.append(Spacer(1, 12)) | |
cleaned_text = re.sub(r'#+\s*', '', text_content).replace("*", "") | |
text_paragraphs = cleaned_text.split('\n') | |
for para in text_paragraphs: | |
if para.strip(): | |
story.append(Paragraph(para, style_normal)) | |
doc.build(story) | |
# --- 2. Render PDF pages as images for preview --- | |
preview_images = [] | |
try: | |
pdf_doc = fitz.open(pdf_filename) | |
for page_num in range(len(pdf_doc)): | |
page = pdf_doc.load_page(page_num) | |
pix = page.get_pixmap(dpi=150) | |
preview_img_path = os.path.join(temp_dir, f"preview_{uuid.uuid4()}_p{page_num}.png") | |
pix.save(preview_img_path) | |
preview_images.append(preview_img_path) | |
pdf_doc.close() | |
except Exception as e: | |
print(f"Error generating PDF preview: {e}") | |
return pdf_filename, preview_images | |
# --- Core Application Logic --- | |
def process_document_stream( | |
image: Image.Image, | |
prompt_input: str, | |
image_scale_factor: float, # New parameter for image scaling | |
max_new_tokens: int, | |
temperature: float, | |
top_p: float, | |
top_k: int, | |
repetition_penalty: float | |
): | |
""" | |
Main function that handles model inference using tencent/POINTS-Reader. | |
""" | |
if image is None: | |
yield "Please upload an image.", "" | |
return | |
if not prompt_input or not prompt_input.strip(): | |
yield "Please enter a prompt.", "" | |
return | |
# --- IMPLEMENTATION: Image Scaling based on user input --- | |
if image_scale_factor > 1.0: | |
try: | |
original_width, original_height = image.size | |
new_width = int(original_width * image_scale_factor) | |
new_height = int(original_height * image_scale_factor) | |
print(f"Scaling image from {image.size} to ({new_width}, {new_height}) with factor {image_scale_factor}.") | |
# Use a high-quality resampling filter for better results | |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
except Exception as e: | |
print(f"Error during image scaling: {e}") | |
# Continue with the original image if scaling fails | |
pass | |
# --- END IMPLEMENTATION --- | |
temp_image_path = None | |
try: | |
# --- FIX: Save the PIL Image to a temporary file --- | |
# The model expects a file path, not a PIL object. | |
temp_dir = tempfile.gettempdir() | |
temp_image_path = os.path.join(temp_dir, f"temp_image_{uuid.uuid4()}.png") | |
image.save(temp_image_path) | |
# Prepare content for the model using the temporary file path | |
content = [ | |
dict(type='image', image=temp_image_path), | |
dict(type='text', text=prompt_input) | |
] | |
messages = [ | |
{ | |
'role': 'user', | |
'content': content | |
} | |
] | |
# Prepare generation configuration from UI inputs | |
generation_config = { | |
'max_new_tokens': max_new_tokens, | |
'repetition_penalty': repetition_penalty, | |
'temperature': temperature, | |
'top_p': top_p, | |
'top_k': top_k, | |
'do_sample': True if temperature > 0 else False | |
} | |
# Run inference | |
response = model.chat( | |
messages, | |
tokenizer, | |
image_processor, | |
generation_config | |
) | |
# Yield the full response at once | |
yield response, response | |
except Exception as e: | |
traceback.print_exc() | |
yield f"An error occurred during processing: {str(e)}", "" | |
finally: | |
# --- Clean up the temporary image file --- | |
if temp_image_path and os.path.exists(temp_image_path): | |
os.remove(temp_image_path) | |
# --- Gradio UI Definition --- | |
def create_gradio_interface(): | |
"""Builds and returns the Gradio web interface.""" | |
css = """ | |
.main-container { max-width: 1400px; margin: 0 auto; } | |
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;} | |
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; } | |
#gallery { min-height: 400px; } | |
""" | |
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo: | |
gr.HTML(f""" | |
<div class="title" style="text-align: center"> | |
<h1>Document Conversion with POINTS Reader 📖</h1> | |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
Using tencent/POINTS-Reader Multimodal for Image Content Extraction | |
</p> | |
</div> | |
""") | |
with gr.Row(): | |
# Left Column (Inputs) | |
with gr.Column(scale=1): | |
gr.Textbox( | |
label="Model in Use ⚡", | |
value="tencent/POINTS-Reader", | |
interactive=False | |
) | |
prompt_input = gr.Textbox( | |
label="Query Input", | |
placeholder="✦︎ Enter the prompt", | |
value="Perform OCR on the image precisely.", | |
) | |
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload']) | |
with gr.Accordion("Advanced Settings", open=False): | |
# --- NEW UI ELEMENT: Image Scaling Slider --- | |
image_scale_factor = gr.Slider( | |
minimum=1.0, | |
maximum=3.0, | |
value=1.0, | |
step=0.1, | |
label="Image Upscale Factor", | |
info="Increases image size before processing. Can improve OCR on small text. Default: 1.0 (no change)." | |
) | |
# --- END NEW UI ELEMENT --- | |
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=2048, step=256, label="Max New Tokens") | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.05, value=0.7) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.8) | |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=20) | |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.05) | |
gr.Markdown("### PDF Export Settings") | |
font_size = gr.Dropdown(choices=["8", "10", "12", "14", "16", "18"], value="12", label="Font Size") | |
line_spacing = gr.Dropdown(choices=[1.0, 1.15, 1.5, 2.0], value=1.15, label="Line Spacing") | |
alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment") | |
image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF") | |
process_btn = gr.Button("🚀 Process Image", variant="primary", elem_classes=["process-button"], size="lg") | |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary") | |
# Right Column (Outputs) | |
with gr.Column(scale=2): | |
with gr.Tabs() as tabs: | |
with gr.Tab("📝 Extracted Content"): | |
raw_output_stream = gr.Textbox(label="Raw Model Output (max T ≤ 120s)", interactive=False, lines=15, show_copy_button=True) | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=["examples/1.jpeg", | |
"examples/2.jpeg", | |
"examples/3.jpeg", | |
"examples/4.jpeg", | |
"examples/5.jpeg"], | |
inputs=image_input, label="Examples" | |
) | |
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/POINTS-Reader-OCR/discussions) | [prithivMLmods🤗](https://huggingface.co/prithivMLmods)") | |
with gr.Tab("📰 README.md"): | |
with gr.Accordion("(Result.md)", open=True): | |
# --- FIX: Added latex_delimiters to enable LaTeX rendering --- | |
markdown_output = gr.Markdown(latex_delimiters=[ | |
{"left": "$$", "right": "$$", "display": True}, | |
{"left": "$", "right": "$", "display": False} | |
]) | |
with gr.Tab("📋 PDF Preview"): | |
generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary") | |
pdf_output_file = gr.File(label="Download Generated PDF", interactive=False) | |
pdf_preview_gallery = gr.Gallery(label="PDF Page Preview", show_label=True, elem_id="gallery", columns=2, object_fit="contain", height="auto") | |
# Event Handlers | |
def clear_all_outputs(): | |
return None, "", "Raw output will appear here.", "", None, None | |
process_btn.click( | |
fn=process_document_stream, | |
# --- UPDATE: Add the new slider to the inputs list --- | |
inputs=[image_input, prompt_input, image_scale_factor, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[raw_output_stream, markdown_output] | |
) | |
generate_pdf_btn.click( | |
fn=generate_and_preview_pdf, | |
inputs=[image_input, raw_output_stream, font_size, line_spacing, alignment, image_size], | |
outputs=[pdf_output_file, pdf_preview_gallery] | |
) | |
clear_btn.click( | |
clear_all_outputs, | |
outputs=[image_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
demo.queue(max_size=50).launch(share=True, show_error=True) |