Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,607 Bytes
0031934 750dd21 0031934 750dd21 0031934 750dd21 0031934 dbe4d05 0031934 750dd21 0031934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import time
from threading import Thread
from io import BytesIO
import uuid
import tempfile
import gradio as gr
import requests
import torch
from PIL import Image
import fitz
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, Qwen2VLImageProcessor
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
from reportlab.lib.units import inch
# --- Constants and Model Setup ---
MAX_INPUT_TOKEN_LENGTH = 4096
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
# --- Model Loading: tencent/POINTS-Reader ---
MODEL_PATH = 'tencent/POINTS-Reader'
print(f"Loading model: {MODEL_PATH}")
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
image_processor = Qwen2VLImageProcessor.from_pretrained(MODEL_PATH)
print("Model loaded successfully.")
# --- PDF Generation and Preview Utility Function ---
def generate_and_preview_pdf(image: Image.Image, text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str):
"""
Generates a PDF, saves it, and then creates image previews of its pages.
Returns the path to the PDF and a list of paths to the preview images.
"""
if image is None or not text_content or not text_content.strip():
raise gr.Error("Cannot generate PDF. Image or text content is missing.")
# --- 1. Generate the PDF ---
temp_dir = tempfile.gettempdir()
pdf_filename = os.path.join(temp_dir, f"output_{uuid.uuid4()}.pdf")
doc = SimpleDocTemplate(
pdf_filename,
pagesize=A4,
rightMargin=inch, leftMargin=inch,
topMargin=inch, bottomMargin=inch
)
styles = getSampleStyleSheet()
style_normal = styles["Normal"]
style_normal.fontSize = int(font_size)
style_normal.leading = int(font_size) * line_spacing
style_normal.alignment = {"Left": 0, "Center": 1, "Right": 2, "Justified": 4}[alignment]
story = []
img_buffer = BytesIO()
image.save(img_buffer, format='PNG')
img_buffer.seek(0)
page_width, _ = A4
available_width = page_width - 2 * inch
image_widths = {
"Small": available_width * 0.3,
"Medium": available_width * 0.6,
"Large": available_width * 0.9,
}
img_width = image_widths[image_size]
img = RLImage(img_buffer, width=img_width, height=image.height * (img_width / image.width))
story.append(img)
story.append(Spacer(1, 12))
cleaned_text = re.sub(r'#+\s*', '', text_content).replace("*", "")
text_paragraphs = cleaned_text.split('\n')
for para in text_paragraphs:
if para.strip():
story.append(Paragraph(para, style_normal))
doc.build(story)
# --- 2. Render PDF pages as images for preview ---
preview_images = []
try:
pdf_doc = fitz.open(pdf_filename)
for page_num in range(len(pdf_doc)):
page = pdf_doc.load_page(page_num)
pix = page.get_pixmap(dpi=150)
preview_img_path = os.path.join(temp_dir, f"preview_{uuid.uuid4()}_p{page_num}.png")
pix.save(preview_img_path)
preview_images.append(preview_img_path)
pdf_doc.close()
except Exception as e:
print(f"Error generating PDF preview: {e}")
return pdf_filename, preview_images
# --- Core Application Logic ---
@spaces.GPU
def process_document_stream(
image: Image.Image,
prompt_input: str,
image_scale_factor: float, # New parameter for image scaling
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float
):
"""
Main function that handles model inference using tencent/POINTS-Reader.
"""
if image is None:
yield "Please upload an image.", ""
return
if not prompt_input or not prompt_input.strip():
yield "Please enter a prompt.", ""
return
# --- IMPLEMENTATION: Image Scaling based on user input ---
if image_scale_factor > 1.0:
try:
original_width, original_height = image.size
new_width = int(original_width * image_scale_factor)
new_height = int(original_height * image_scale_factor)
print(f"Scaling image from {image.size} to ({new_width}, {new_height}) with factor {image_scale_factor}.")
# Use a high-quality resampling filter for better results
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
except Exception as e:
print(f"Error during image scaling: {e}")
# Continue with the original image if scaling fails
pass
# --- END IMPLEMENTATION ---
temp_image_path = None
try:
# --- FIX: Save the PIL Image to a temporary file ---
# The model expects a file path, not a PIL object.
temp_dir = tempfile.gettempdir()
temp_image_path = os.path.join(temp_dir, f"temp_image_{uuid.uuid4()}.png")
image.save(temp_image_path)
# Prepare content for the model using the temporary file path
content = [
dict(type='image', image=temp_image_path),
dict(type='text', text=prompt_input)
]
messages = [
{
'role': 'user',
'content': content
}
]
# Prepare generation configuration from UI inputs
generation_config = {
'max_new_tokens': max_new_tokens,
'repetition_penalty': repetition_penalty,
'temperature': temperature,
'top_p': top_p,
'top_k': top_k,
'do_sample': True if temperature > 0 else False
}
# Run inference
response = model.chat(
messages,
tokenizer,
image_processor,
generation_config
)
# Yield the full response at once
yield response, response
except Exception as e:
traceback.print_exc()
yield f"An error occurred during processing: {str(e)}", ""
finally:
# --- Clean up the temporary image file ---
if temp_image_path and os.path.exists(temp_image_path):
os.remove(temp_image_path)
# --- Gradio UI Definition ---
def create_gradio_interface():
"""Builds and returns the Gradio web interface."""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
#gallery { min-height: 400px; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
gr.HTML(f"""
<div class="title" style="text-align: center">
<h1>Document Conversion with POINTS Reader 📖</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Using tencent/POINTS-Reader Multimodal for Image Content Extraction
</p>
</div>
""")
with gr.Row():
# Left Column (Inputs)
with gr.Column(scale=1):
gr.Textbox(
label="Model in Use ⚡",
value="tencent/POINTS-Reader",
interactive=False
)
prompt_input = gr.Textbox(
label="Query Input",
placeholder="✦︎ Enter the prompt",
value="Perform OCR on the image precisely.",
)
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
with gr.Accordion("Advanced Settings", open=False):
# --- NEW UI ELEMENT: Image Scaling Slider ---
image_scale_factor = gr.Slider(
minimum=1.0,
maximum=3.0,
value=1.0,
step=0.1,
label="Image Upscale Factor",
info="Increases image size before processing. Can improve OCR on small text. Default: 1.0 (no change)."
)
# --- END NEW UI ELEMENT ---
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=2048, step=256, label="Max New Tokens")
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.05, value=0.7)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.8)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=20)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.05)
gr.Markdown("### PDF Export Settings")
font_size = gr.Dropdown(choices=["8", "10", "12", "14", "16", "18"], value="12", label="Font Size")
line_spacing = gr.Dropdown(choices=[1.0, 1.15, 1.5, 2.0], value=1.15, label="Line Spacing")
alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment")
image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF")
process_btn = gr.Button("🚀 Process Image", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
# Right Column (Outputs)
with gr.Column(scale=2):
with gr.Tabs() as tabs:
with gr.Tab("📝 Extracted Content"):
raw_output_stream = gr.Textbox(label="Raw Model Output (max T ≤ 120s)", interactive=False, lines=15, show_copy_button=True)
with gr.Row():
examples = gr.Examples(
examples=["examples/1.jpeg",
"examples/2.jpeg",
"examples/3.jpeg",
"examples/4.jpeg",
"examples/5.jpeg"],
inputs=image_input, label="Examples"
)
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/POINTS-Reader-OCR/discussions) | [prithivMLmods🤗](https://huggingface.co/prithivMLmods)")
with gr.Tab("📰 README.md"):
with gr.Accordion("(Result.md)", open=True):
# --- FIX: Added latex_delimiters to enable LaTeX rendering ---
markdown_output = gr.Markdown(latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
])
with gr.Tab("📋 PDF Preview"):
generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary")
pdf_output_file = gr.File(label="Download Generated PDF", interactive=False)
pdf_preview_gallery = gr.Gallery(label="PDF Page Preview", show_label=True, elem_id="gallery", columns=2, object_fit="contain", height="auto")
# Event Handlers
def clear_all_outputs():
return None, "", "Raw output will appear here.", "", None, None
process_btn.click(
fn=process_document_stream,
# --- UPDATE: Add the new slider to the inputs list ---
inputs=[image_input, prompt_input, image_scale_factor, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[raw_output_stream, markdown_output]
)
generate_pdf_btn.click(
fn=generate_and_preview_pdf,
inputs=[image_input, raw_output_stream, font_size, line_spacing, alignment, image_size],
outputs=[pdf_output_file, pdf_preview_gallery]
)
clear_btn.click(
clear_all_outputs,
outputs=[image_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(max_size=50).launch(share=True, show_error=True) |