File size: 17,555 Bytes
03c9962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import base64
from io import BytesIO
import re

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageDraw
import cv2

from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from qwen_vl_utils import process_vision_info

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Camel-Doc-OCR-062825
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load ViLaSR-7B
MODEL_ID_X = "AntResearchNLP/ViLaSR"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load OCRFlux-3B
MODEL_ID_T = "ChatDOC/OCRFlux-3B"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load ShotVL-7B
MODEL_ID_S = "Vchitect/ShotVL-7B"
processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True)
model_s = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_S,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Helper functions for object detection
def image_to_base64(image):
    """Convert a PIL image to a base64-encoded string."""
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str

def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
    """Draw bounding boxes on an image."""
    draw = ImageDraw.Draw(image)
    for box in bounding_boxes:
        xmin, ymin, xmax, ymax = box
        draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
    return image

def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
    """Rescale bounding boxes from normalized (1000x1000) to original image dimensions."""
    x_scale = original_width / scaled_width
    y_scale = original_height / scaled_height
    rescaled_boxes = []
    for box in bounding_boxes:
        xmin, ymin, xmax, ymax = box
        rescaled_box = [
            xmin * x_scale,
            ymin * y_scale,
            xmax * x_scale,
            ymax * y_scale
        ]
        rescaled_boxes.append(rescaled_box)
    return rescaled_boxes

# Default system prompt for object detection
default_system_prompt = (
    "You are a helpful assistant to detect objects in images. When asked to detect elements based on a description, "
    "you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] with the values being scaled "
    "to 512 by 512 pixels. When there are more than one result, answer with a list of bounding boxes in the form "
    "of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."
    "Parse only the boxes; don't write unnecessary content."
)

# Function for object detection
@spaces.GPU
def run_example(image, text_input, system_prompt):
    """Detect objects in an image and return bounding box annotations."""
    model = model_x  
    processor = processor_x

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
                {"type": "text", "text": system_prompt},
                {"type": "text", "text": text_input},
            ],
        }
    ]

    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    generated_ids = model.generate(**inputs, max_new_tokens=256)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]'
    matches = re.findall(pattern, str(output_text))
    parsed_boxes = [[int(num) for num in match] for match in matches]
    scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
    annotated_image = draw_bounding_boxes(image.copy(), scaled_boxes)
    return output_text[0], str(parsed_boxes), annotated_image

def downsample_video(video_path):
    """

    Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp.

    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,

                   max_new_tokens: int = 1024,

                   temperature: float = 0.6,

                   top_p: float = 0.9,

                   top_k: int = 50,

                   repetition_penalty: float = 1.2):
    """

    Generate responses using the selected model for image input.

    """
    if model_name == "Camel-Doc-OCR-062825":
        processor = processor_m
        model = model_m
    elif model_name == "ViLaSR-7B":
        processor = processor_x
        model = model_x
    elif model_name == "OCRFlux-3B":
        processor = processor_t
        model = model_t
    elif model_name == "ShotVL-7B":
        processor = processor_s
        model = model_s
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return

    messages = [{
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": text},
        ]
    }]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full],
        images=[image],
        return_tensors="pt",
        padding=True,
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,

                   max_new_tokens: int = 1024,

                   temperature: float = 0.6,

                   top_p: float = 0.9,

                   top_k: int = 50,

                   repetition_penalty: float = 1.2):
    """

    Generate responses using the selected model for video input.

    """
    if model_name == "Camel-Doc-OCR-062825":
        processor = processor_m
        model = model_m
    elif model_name == "ViLaSR-7B":
        processor = processor_x
        model = model_x
    elif model_name == "OCRFlux-3B":
        processor = processor_t
        model = model_t
    elif model_name == "ShotVL-7B":
        processor = processor_s
        model = model_s
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video.", "Please upload a video."
        return

    frames = downsample_video(video_path)
    messages = [
        {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
        {"role": "user", "content": [{"type": "text", "text": text}]}
    ]
    for frame in frames:
        image, timestamp = frame
        messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
        messages[1]["content"].append({"type": "image", "image": image})
    inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt",
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer

# Define examples for image, video, and object detection inference
image_examples = [
    ["convert this page to doc [text] precisely for markdown.", "images/1.png"],
    ["convert this page to doc [table] precisely for markdown.", "images/2.png"],
    ["explain the movie shot in detail.", "images/3.png"],   
    ["fill the correct numbers.", "images/4.png"]
]

video_examples = [
    ["explain the ad video in detail.", "videos/1.mp4"],
    ["explain the video in detail.", "videos/2.mp4"]
]

object_detection_examples = [
    ["object/1.png", "detect red and yellow cars."],
    ["object/2.png", "detect the white cat."]
]

# Added CSS to style the output area as a "Canvas"
css = """

.submit-btn {

    background-color: #2980b9 !important;

    color: white !important;

}

.submit-btn:hover {

    background-color: #3498db !important;

}

.canvas-output {

    border: 2px solid #4682B4;

    border-radius: 10px;

    padding: 20px;

}

"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **[Doc VLMs v2 [Localization]](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    )
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )
                with gr.TabItem("Object Detection / Localization"):
                    with gr.Row():
                        with gr.Column():
                            input_img = gr.Image(label="Input Image", type="pil")
                            system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt, visible=False)
                            text_input = gr.Textbox(label="Query Input")
                            submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
                        with gr.Column():
                            model_output_text = gr.Textbox(label="Model Output Text")
                            parsed_boxes = gr.Textbox(label="Parsed Boxes")
                            annotated_image = gr.Image(label="Annotated Image")

                    gr.Examples(
                        examples=object_detection_examples,
                        inputs=[input_img, text_input],
                        outputs=[model_output_text, parsed_boxes, annotated_image],
                        fn=run_example,
                        cache_examples=True,
                    )

                    submit_btn.click(
                        fn=run_example,
                        inputs=[input_img, text_input, system_prompt],
                        outputs=[model_output_text, parsed_boxes, annotated_image]
                    )

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)

        with gr.Column():
            with gr.Column(elem_classes="canvas-output"):
                gr.Markdown("## Result.Md")
                output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
                markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")

            model_choice = gr.Radio(
                choices=["Camel-Doc-OCR-062825", "OCRFlux-3B", "ShotVL-7B", "ViLaSR-7B"],
                label="Select Model",
                value="Camel-Doc-OCR-062825"
            )

            gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Doc-VLMs-v2-Localization/discussions)")
            gr.Markdown("> [Camel-Doc-OCR-062825](https://huggingface.co/prithivMLmods/Camel-Doc-OCR-062825) : camel-doc-ocr-062825 model is a fine-tuned version of qwen2.5-vl-7b-instruct, optimized for document retrieval, content extraction, and analysis recognition. built on top of the qwen2.5-vl architecture, this model enhances document comprehension capabilities.")
            gr.Markdown("> [OCRFlux-3B](https://huggingface.co/ChatDOC/OCRFlux-3B) : ocrflux-3b model that's fine-tuned from qwen2.5-vl-3b-instruct using our private document datasets and some data from olmocr-mix-0225 dataset. optimized for document retrieval, content extraction, and analysis recognition. the best way to use this model is via the ocrflux toolkit.")
            gr.Markdown("> [ViLaSR](https://huggingface.co/AntResearchNLP/ViLaSR) : vilasr-7b model as presented in reinforcing spatial reasoning in vision-language models with interwoven thinking and visual drawing. efficient reasoning capabilities.")
            gr.Markdown("> [ShotVL-7B](https://huggingface.co/Vchitect/ShotVL-7B) : shotvl-7b is a fine-tuned version of qwen2.5-vl-7b-instruct, trained by supervised fine-tuning on the largest and high-quality dataset for cinematic language understanding to date. it currently achieves state-of-the-art performance on shotbench.")
            gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")  
            
    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)