Spaces:
Running
on
Zero
Running
on
Zero
initial commit
Browse files- .gitattributes +6 -0
- app.py +420 -0
- images/1.png +3 -0
- images/2.png +0 -0
- images/3.png +0 -0
- images/4.png +3 -0
- object/1.png +3 -0
- object/2.png +3 -0
- requirements.txt +15 -0
- videos/1.mp4 +3 -0
- videos/2.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
images/1.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
images/4.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
object/1.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
object/2.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
videos/1.mp4 filter=lfs diff=lfs merge=lfs -text
|
41 |
+
videos/2.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
+
import json
|
5 |
+
import time
|
6 |
+
import asyncio
|
7 |
+
from threading import Thread
|
8 |
+
import base64
|
9 |
+
from io import BytesIO
|
10 |
+
import re
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
import spaces
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
from PIL import Image, ImageDraw
|
17 |
+
import cv2
|
18 |
+
|
19 |
+
from transformers import (
|
20 |
+
Qwen2VLForConditionalGeneration,
|
21 |
+
Qwen2_5_VLForConditionalGeneration,
|
22 |
+
AutoProcessor,
|
23 |
+
TextIteratorStreamer,
|
24 |
+
)
|
25 |
+
from qwen_vl_utils import process_vision_info
|
26 |
+
|
27 |
+
# Constants for text generation
|
28 |
+
MAX_MAX_NEW_TOKENS = 2048
|
29 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
30 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
31 |
+
|
32 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
33 |
+
|
34 |
+
# Load Camel-Doc-OCR-062825
|
35 |
+
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
|
36 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
37 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
38 |
+
MODEL_ID_M,
|
39 |
+
trust_remote_code=True,
|
40 |
+
torch_dtype=torch.float16
|
41 |
+
).to(device).eval()
|
42 |
+
|
43 |
+
# Load ViLaSR-7B
|
44 |
+
MODEL_ID_X = "AntResearchNLP/ViLaSR"
|
45 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
46 |
+
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
47 |
+
MODEL_ID_X,
|
48 |
+
trust_remote_code=True,
|
49 |
+
torch_dtype=torch.float16
|
50 |
+
).to(device).eval()
|
51 |
+
|
52 |
+
# Load OCRFlux-3B
|
53 |
+
MODEL_ID_T = "ChatDOC/OCRFlux-3B"
|
54 |
+
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
|
55 |
+
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
56 |
+
MODEL_ID_T,
|
57 |
+
trust_remote_code=True,
|
58 |
+
torch_dtype=torch.float16
|
59 |
+
).to(device).eval()
|
60 |
+
|
61 |
+
# Load ShotVL-7B
|
62 |
+
MODEL_ID_S = "Vchitect/ShotVL-7B"
|
63 |
+
processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True)
|
64 |
+
model_s = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
65 |
+
MODEL_ID_S,
|
66 |
+
trust_remote_code=True,
|
67 |
+
torch_dtype=torch.float16
|
68 |
+
).to(device).eval()
|
69 |
+
|
70 |
+
# Helper functions for object detection
|
71 |
+
def image_to_base64(image):
|
72 |
+
"""Convert a PIL image to a base64-encoded string."""
|
73 |
+
buffered = BytesIO()
|
74 |
+
image.save(buffered, format="PNG")
|
75 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
76 |
+
return img_str
|
77 |
+
|
78 |
+
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
|
79 |
+
"""Draw bounding boxes on an image."""
|
80 |
+
draw = ImageDraw.Draw(image)
|
81 |
+
for box in bounding_boxes:
|
82 |
+
xmin, ymin, xmax, ymax = box
|
83 |
+
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
|
84 |
+
return image
|
85 |
+
|
86 |
+
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
|
87 |
+
"""Rescale bounding boxes from normalized (1000x1000) to original image dimensions."""
|
88 |
+
x_scale = original_width / scaled_width
|
89 |
+
y_scale = original_height / scaled_height
|
90 |
+
rescaled_boxes = []
|
91 |
+
for box in bounding_boxes:
|
92 |
+
xmin, ymin, xmax, ymax = box
|
93 |
+
rescaled_box = [
|
94 |
+
xmin * x_scale,
|
95 |
+
ymin * y_scale,
|
96 |
+
xmax * x_scale,
|
97 |
+
ymax * y_scale
|
98 |
+
]
|
99 |
+
rescaled_boxes.append(rescaled_box)
|
100 |
+
return rescaled_boxes
|
101 |
+
|
102 |
+
# Default system prompt for object detection
|
103 |
+
default_system_prompt = (
|
104 |
+
"You are a helpful assistant to detect objects in images. When asked to detect elements based on a description, "
|
105 |
+
"you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] with the values being scaled "
|
106 |
+
"to 512 by 512 pixels. When there are more than one result, answer with a list of bounding boxes in the form "
|
107 |
+
"of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."
|
108 |
+
"Parse only the boxes; don't write unnecessary content."
|
109 |
+
)
|
110 |
+
|
111 |
+
# Function for object detection
|
112 |
+
@spaces.GPU
|
113 |
+
def run_example(image, text_input, system_prompt):
|
114 |
+
"""Detect objects in an image and return bounding box annotations."""
|
115 |
+
model = model_x
|
116 |
+
processor = processor_x
|
117 |
+
|
118 |
+
messages = [
|
119 |
+
{
|
120 |
+
"role": "user",
|
121 |
+
"content": [
|
122 |
+
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
|
123 |
+
{"type": "text", "text": system_prompt},
|
124 |
+
{"type": "text", "text": text_input},
|
125 |
+
],
|
126 |
+
}
|
127 |
+
]
|
128 |
+
|
129 |
+
text = processor.apply_chat_template(
|
130 |
+
messages, tokenize=False, add_generation_prompt=True
|
131 |
+
)
|
132 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
133 |
+
inputs = processor(
|
134 |
+
text=[text],
|
135 |
+
images=image_inputs,
|
136 |
+
videos=video_inputs,
|
137 |
+
padding=True,
|
138 |
+
return_tensors="pt",
|
139 |
+
)
|
140 |
+
inputs = inputs.to("cuda")
|
141 |
+
|
142 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
143 |
+
generated_ids_trimmed = [
|
144 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
145 |
+
]
|
146 |
+
output_text = processor.batch_decode(
|
147 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
148 |
+
)
|
149 |
+
pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]'
|
150 |
+
matches = re.findall(pattern, str(output_text))
|
151 |
+
parsed_boxes = [[int(num) for num in match] for match in matches]
|
152 |
+
scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
|
153 |
+
annotated_image = draw_bounding_boxes(image.copy(), scaled_boxes)
|
154 |
+
return output_text[0], str(parsed_boxes), annotated_image
|
155 |
+
|
156 |
+
def downsample_video(video_path):
|
157 |
+
"""
|
158 |
+
Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp.
|
159 |
+
"""
|
160 |
+
vidcap = cv2.VideoCapture(video_path)
|
161 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
162 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
163 |
+
frames = []
|
164 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
165 |
+
for i in frame_indices:
|
166 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
167 |
+
success, image = vidcap.read()
|
168 |
+
if success:
|
169 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
170 |
+
pil_image = Image.fromarray(image)
|
171 |
+
timestamp = round(i / fps, 2)
|
172 |
+
frames.append((pil_image, timestamp))
|
173 |
+
vidcap.release()
|
174 |
+
return frames
|
175 |
+
|
176 |
+
@spaces.GPU
|
177 |
+
def generate_image(model_name: str, text: str, image: Image.Image,
|
178 |
+
max_new_tokens: int = 1024,
|
179 |
+
temperature: float = 0.6,
|
180 |
+
top_p: float = 0.9,
|
181 |
+
top_k: int = 50,
|
182 |
+
repetition_penalty: float = 1.2):
|
183 |
+
"""
|
184 |
+
Generate responses using the selected model for image input.
|
185 |
+
"""
|
186 |
+
if model_name == "Camel-Doc-OCR-062825":
|
187 |
+
processor = processor_m
|
188 |
+
model = model_m
|
189 |
+
elif model_name == "ViLaSR-7B":
|
190 |
+
processor = processor_x
|
191 |
+
model = model_x
|
192 |
+
elif model_name == "OCRFlux-3B":
|
193 |
+
processor = processor_t
|
194 |
+
model = model_t
|
195 |
+
elif model_name == "ShotVL-7B":
|
196 |
+
processor = processor_s
|
197 |
+
model = model_s
|
198 |
+
else:
|
199 |
+
yield "Invalid model selected.", "Invalid model selected."
|
200 |
+
return
|
201 |
+
|
202 |
+
if image is None:
|
203 |
+
yield "Please upload an image.", "Please upload an image."
|
204 |
+
return
|
205 |
+
|
206 |
+
messages = [{
|
207 |
+
"role": "user",
|
208 |
+
"content": [
|
209 |
+
{"type": "image", "image": image},
|
210 |
+
{"type": "text", "text": text},
|
211 |
+
]
|
212 |
+
}]
|
213 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
214 |
+
inputs = processor(
|
215 |
+
text=[prompt_full],
|
216 |
+
images=[image],
|
217 |
+
return_tensors="pt",
|
218 |
+
padding=True,
|
219 |
+
truncation=False,
|
220 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
221 |
+
).to(device)
|
222 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
223 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
224 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
225 |
+
thread.start()
|
226 |
+
buffer = ""
|
227 |
+
for new_text in streamer:
|
228 |
+
buffer += new_text
|
229 |
+
time.sleep(0.01)
|
230 |
+
yield buffer, buffer
|
231 |
+
|
232 |
+
@spaces.GPU
|
233 |
+
def generate_video(model_name: str, text: str, video_path: str,
|
234 |
+
max_new_tokens: int = 1024,
|
235 |
+
temperature: float = 0.6,
|
236 |
+
top_p: float = 0.9,
|
237 |
+
top_k: int = 50,
|
238 |
+
repetition_penalty: float = 1.2):
|
239 |
+
"""
|
240 |
+
Generate responses using the selected model for video input.
|
241 |
+
"""
|
242 |
+
if model_name == "Camel-Doc-OCR-062825":
|
243 |
+
processor = processor_m
|
244 |
+
model = model_m
|
245 |
+
elif model_name == "ViLaSR-7B":
|
246 |
+
processor = processor_x
|
247 |
+
model = model_x
|
248 |
+
elif model_name == "OCRFlux-3B":
|
249 |
+
processor = processor_t
|
250 |
+
model = model_t
|
251 |
+
elif model_name == "ShotVL-7B":
|
252 |
+
processor = processor_s
|
253 |
+
model = model_s
|
254 |
+
else:
|
255 |
+
yield "Invalid model selected.", "Invalid model selected."
|
256 |
+
return
|
257 |
+
|
258 |
+
if video_path is None:
|
259 |
+
yield "Please upload a video.", "Please upload a video."
|
260 |
+
return
|
261 |
+
|
262 |
+
frames = downsample_video(video_path)
|
263 |
+
messages = [
|
264 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
265 |
+
{"role": "user", "content": [{"type": "text", "text": text}]}
|
266 |
+
]
|
267 |
+
for frame in frames:
|
268 |
+
image, timestamp = frame
|
269 |
+
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
270 |
+
messages[1]["content"].append({"type": "image", "image": image})
|
271 |
+
inputs = processor.apply_chat_template(
|
272 |
+
messages,
|
273 |
+
tokenize=True,
|
274 |
+
add_generation_prompt=True,
|
275 |
+
return_dict=True,
|
276 |
+
return_tensors="pt",
|
277 |
+
truncation=False,
|
278 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
279 |
+
).to(device)
|
280 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
281 |
+
generation_kwargs = {
|
282 |
+
**inputs,
|
283 |
+
"streamer": streamer,
|
284 |
+
"max_new_tokens": max_new_tokens,
|
285 |
+
"do_sample": True,
|
286 |
+
"temperature": temperature,
|
287 |
+
"top_p": top_p,
|
288 |
+
"top_k": top_k,
|
289 |
+
"repetition_penalty": repetition_penalty,
|
290 |
+
}
|
291 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
292 |
+
thread.start()
|
293 |
+
buffer = ""
|
294 |
+
for new_text in streamer:
|
295 |
+
buffer += new_text
|
296 |
+
buffer = buffer.replace("<|im_end|>", "")
|
297 |
+
time.sleep(0.01)
|
298 |
+
yield buffer, buffer
|
299 |
+
|
300 |
+
# Define examples for image, video, and object detection inference
|
301 |
+
image_examples = [
|
302 |
+
["convert this page to doc [text] precisely for markdown.", "images/1.png"],
|
303 |
+
["convert this page to doc [table] precisely for markdown.", "images/2.png"],
|
304 |
+
["explain the movie shot in detail.", "images/3.png"],
|
305 |
+
["fill the correct numbers.", "images/4.png"]
|
306 |
+
]
|
307 |
+
|
308 |
+
video_examples = [
|
309 |
+
["explain the ad video in detail.", "videos/1.mp4"],
|
310 |
+
["explain the video in detail.", "videos/2.mp4"]
|
311 |
+
]
|
312 |
+
|
313 |
+
object_detection_examples = [
|
314 |
+
["object/1.png", "detect red and yellow cars."],
|
315 |
+
["object/2.png", "detect the white cat."]
|
316 |
+
]
|
317 |
+
|
318 |
+
# Added CSS to style the output area as a "Canvas"
|
319 |
+
css = """
|
320 |
+
.submit-btn {
|
321 |
+
background-color: #2980b9 !important;
|
322 |
+
color: white !important;
|
323 |
+
}
|
324 |
+
.submit-btn:hover {
|
325 |
+
background-color: #3498db !important;
|
326 |
+
}
|
327 |
+
.canvas-output {
|
328 |
+
border: 2px solid #4682B4;
|
329 |
+
border-radius: 10px;
|
330 |
+
padding: 20px;
|
331 |
+
}
|
332 |
+
"""
|
333 |
+
|
334 |
+
# Create the Gradio Interface
|
335 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
336 |
+
gr.Markdown("# **[Doc VLMs v2 [Localization]](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
337 |
+
with gr.Row():
|
338 |
+
with gr.Column():
|
339 |
+
with gr.Tabs():
|
340 |
+
with gr.TabItem("Image Inference"):
|
341 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
342 |
+
image_upload = gr.Image(type="pil", label="Image")
|
343 |
+
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
344 |
+
gr.Examples(
|
345 |
+
examples=image_examples,
|
346 |
+
inputs=[image_query, image_upload]
|
347 |
+
)
|
348 |
+
with gr.TabItem("Video Inference"):
|
349 |
+
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
350 |
+
video_upload = gr.Video(label="Video")
|
351 |
+
video_submit = gr.Button("Submit", elem_classes="submit-btn")
|
352 |
+
gr.Examples(
|
353 |
+
examples=video_examples,
|
354 |
+
inputs=[video_query, video_upload]
|
355 |
+
)
|
356 |
+
with gr.TabItem("Object Detection / Localization"):
|
357 |
+
with gr.Row():
|
358 |
+
with gr.Column():
|
359 |
+
input_img = gr.Image(label="Input Image", type="pil")
|
360 |
+
system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt, visible=False)
|
361 |
+
text_input = gr.Textbox(label="Query Input")
|
362 |
+
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
|
363 |
+
with gr.Column():
|
364 |
+
model_output_text = gr.Textbox(label="Model Output Text")
|
365 |
+
parsed_boxes = gr.Textbox(label="Parsed Boxes")
|
366 |
+
annotated_image = gr.Image(label="Annotated Image")
|
367 |
+
|
368 |
+
gr.Examples(
|
369 |
+
examples=object_detection_examples,
|
370 |
+
inputs=[input_img, text_input],
|
371 |
+
outputs=[model_output_text, parsed_boxes, annotated_image],
|
372 |
+
fn=run_example,
|
373 |
+
cache_examples=True,
|
374 |
+
)
|
375 |
+
|
376 |
+
submit_btn.click(
|
377 |
+
fn=run_example,
|
378 |
+
inputs=[input_img, text_input, system_prompt],
|
379 |
+
outputs=[model_output_text, parsed_boxes, annotated_image]
|
380 |
+
)
|
381 |
+
|
382 |
+
with gr.Accordion("Advanced options", open=False):
|
383 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
384 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
385 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
386 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
387 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
388 |
+
|
389 |
+
with gr.Column():
|
390 |
+
with gr.Column(elem_classes="canvas-output"):
|
391 |
+
gr.Markdown("## Result.Md")
|
392 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
|
393 |
+
markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")
|
394 |
+
|
395 |
+
model_choice = gr.Radio(
|
396 |
+
choices=["Camel-Doc-OCR-062825", "OCRFlux-3B", "ShotVL-7B", "ViLaSR-7B"],
|
397 |
+
label="Select Model",
|
398 |
+
value="Camel-Doc-OCR-062825"
|
399 |
+
)
|
400 |
+
|
401 |
+
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Doc-VLMs-v2-Localization/discussions)")
|
402 |
+
gr.Markdown("> [Camel-Doc-OCR-062825](https://huggingface.co/prithivMLmods/Camel-Doc-OCR-062825) : camel-doc-ocr-062825 model is a fine-tuned version of qwen2.5-vl-7b-instruct, optimized for document retrieval, content extraction, and analysis recognition. built on top of the qwen2.5-vl architecture, this model enhances document comprehension capabilities.")
|
403 |
+
gr.Markdown("> [OCRFlux-3B](https://huggingface.co/ChatDOC/OCRFlux-3B) : ocrflux-3b model that's fine-tuned from qwen2.5-vl-3b-instruct using our private document datasets and some data from olmocr-mix-0225 dataset. optimized for document retrieval, content extraction, and analysis recognition. the best way to use this model is via the ocrflux toolkit.")
|
404 |
+
gr.Markdown("> [ViLaSR](https://huggingface.co/AntResearchNLP/ViLaSR) : vilasr-7b model as presented in reinforcing spatial reasoning in vision-language models with interwoven thinking and visual drawing. efficient reasoning capabilities.")
|
405 |
+
gr.Markdown("> [ShotVL-7B](https://huggingface.co/Vchitect/ShotVL-7B) : shotvl-7b is a fine-tuned version of qwen2.5-vl-7b-instruct, trained by supervised fine-tuning on the largest and high-quality dataset for cinematic language understanding to date. it currently achieves state-of-the-art performance on shotbench.")
|
406 |
+
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
407 |
+
|
408 |
+
image_submit.click(
|
409 |
+
fn=generate_image,
|
410 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
411 |
+
outputs=[output, markdown_output]
|
412 |
+
)
|
413 |
+
video_submit.click(
|
414 |
+
fn=generate_video,
|
415 |
+
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
416 |
+
outputs=[output, markdown_output]
|
417 |
+
)
|
418 |
+
|
419 |
+
if __name__ == "__main__":
|
420 |
+
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|
images/1.png
ADDED
![]() |
Git LFS Details
|
images/2.png
ADDED
![]() |
images/3.png
ADDED
![]() |
images/4.png
ADDED
![]() |
Git LFS Details
|
object/1.png
ADDED
![]() |
Git LFS Details
|
object/2.png
ADDED
![]() |
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
numpy
|
3 |
+
hf_xet
|
4 |
+
transformers
|
5 |
+
transformers-stream-generator
|
6 |
+
qwen-vl-utils
|
7 |
+
torchvision
|
8 |
+
torch
|
9 |
+
requests
|
10 |
+
huggingface_hub
|
11 |
+
spaces
|
12 |
+
accelerate
|
13 |
+
pillow
|
14 |
+
opencv-python
|
15 |
+
av
|
videos/1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8aa7ee693b951ad682f387e18eda70a9bccb948f7fd587ae921edd719f689ca6
|
3 |
+
size 1409573
|
videos/2.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3916437e5a9ae4fd46c34120d5673dfeb6b1cf2a6b0be7da3d0c53da0ad360bb
|
3 |
+
size 1609393
|