File size: 11,039 Bytes
041f44a c9eaf40 8452106 041f44a 8452106 041f44a ae466e9 041f44a ac64bee 041f44a c9eaf40 ae466e9 041f44a ae466e9 041f44a c9eaf40 041f44a 5125aad 041f44a 5125aad 041f44a 5125aad 041f44a 5125aad 041f44a 5125aad 041f44a 5125aad 041f44a 5125aad 041f44a 5125aad 041f44a 1c6ae55 5125aad 1c6ae55 041f44a 7c0b5e6 041f44a ac64bee 041f44a 5125aad 041f44a 5ee1ed5 041f44a 5125aad 041f44a 5125aad 041f44a 5125aad 041f44a 5125aad 041f44a c9eaf40 041f44a c9eaf40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import cv2
import shutil
from collections import deque
from ultralytics import YOLO # Assuming YOLOv8 library
import numpy as np
import functools
import time
def timer_decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
print(f"{func.__name__} took {execution_time:.2f} seconds to execute")
return result
return wrapper
@timer_decorator
#no longer used in the new approach
def extract_key_frames(input_folder, key_frames_folder, original_fps, model_path='yolov8n.pt'):
"""
Detects frames containing a football and separates them into key frames.
Reduces file I/O by loading frames into memory before processing.
Optimizations:
- Reads all frames into memory once to avoid multiple disk reads.
- Uses OpenCV to write frames instead of shutil.copy (faster).
Args:
input_folder (str): Path to the folder containing input frames.
key_frames_folder (str): Path to save frames containing a football.
original_fps: original frames per second
model_path (str): Path to the YOLOv8 model file (default is yolov8n.pt).
"""
counter = 0
print("Extracting key frames with reduced file I/O...")
# Ensure the output directory exists
os.makedirs(key_frames_folder, exist_ok=True)
# Load YOLO model once
model = YOLO(model_path)
# Maintain last non-key frames for reclassification, max = original_fps
previous_nonkey_frames = deque(maxlen=original_fps)
processed_key_frames = set()
last_frame_was_key = False
# Load frames into memory first (Reduces file I/O), sort frames by file names
frame_names = sorted(os.listdir(input_folder))
frames = {}
for frame_name in frame_names:
if frame_name.lower().endswith(('.jpg', '.png')):
frame_path = os.path.join(input_folder, frame_name)
frames[frame_name] = cv2.imread(frame_path) # Load into RAM
for frame_name, frame in frames.items():
if frame is None:
continue # Skip invalid frames
counter += 1
if counter % 1000 == 0:
print(f"Processed {counter} frames.")
# Run YOLO inference
results = model.predict(frame, conf=0.1, verbose=False)
# Check if a football (sports ball) is detected
ball_detected = any(model.names[int(box.cls)] == "sports ball" for box in results[0].boxes)
if ball_detected:
# TTP: to-do crop the frame
# Reclassify up to {original_fps} previous non-key frames
if not last_frame_was_key:
for _ in range(min(len(previous_nonkey_frames), original_fps)):
nonkey_frame_name, nonkey_frame = previous_nonkey_frames.popleft()
if nonkey_frame_name not in processed_key_frames:
cv2.imwrite(os.path.join(key_frames_folder, nonkey_frame_name), nonkey_frame)
processed_key_frames.add(nonkey_frame_name)
previous_nonkey_frames.clear() # Reset after reclassification
# Save the current frame as a key frame if not already processed
if frame_name not in processed_key_frames:
cv2.imwrite(os.path.join(key_frames_folder, frame_name), frame)
processed_key_frames.add(frame_name)
last_frame_was_key = True
else:
previous_nonkey_frames.append((frame_name, frame))
last_frame_was_key = False
print("Key frame extraction complete (Optimized for File I/O).")
@timer_decorator
def crop_preserve_key_objects(input_folder, output_folder, model_path='yolov8n.pt', target_resolution=(360, 640)):
"""
Optimized version: Uses more RAM and reduces file I/O by storing frames in memory.
Args:
input_folder (str): Path to the folder containing key frames.
output_folder (str): Path to save the processed frames.
model_path (str): Path to the YOLOv8 model file.
target_resolution (tuple): Desired resolution (width, height), e.g., (360, 640).
"""
print("Preprocessing frames to fit the target aspect ratio (Optimized for RAM)...")
model = YOLO(model_path)
target_aspect_ratio = target_resolution[0] / target_resolution[1]
os.makedirs(output_folder, exist_ok=True)
# Sort frames by file name
frame_files = sorted([f for f in os.listdir(input_folder) if f.lower().endswith(('.jpg', '.png'))])
# Load all frames into memory
frames = {}
for frame_name in frame_files:
frame_path = os.path.join(input_folder, frame_name)
frames[frame_name] = cv2.imread(frame_path) # Read into RAM
last_cropping_area = None # Store the last cropping area
last_objects_detected = None # Track last detected object type
ball_counter = 0
counter = 0
for frame_name, frame in frames.items():
if frame is None:
print(f"Error reading frame: {frame_name}")
continue
counter += 1
if counter % 1000 == 0:
print(f"Processed {counter} frames...")
original_height, original_width = frame.shape[:2]
new_width = int(original_height * target_aspect_ratio)
new_height = int(original_width / target_aspect_ratio)
# YOLO inference
results = model.predict(frame, conf=0.1, verbose=False)
# Initialize variables
ball_detected = False
people_boxes = []
ball_box = None
# Process detections
for result in results[0].boxes:
label = result.cls
x_min, y_min, x_max, y_max = result.xyxy[0].cpu().numpy()
if model.names[int(label)] == "sports ball":
ball_detected = True
ball_box = (x_min, y_min, x_max, y_max)
ball_counter += 1
elif model.names[int(label)] == "person":
people_boxes.append((x_min, y_min, x_max, y_max))
# Determine whether to reuse the last cropping area
reuse_last_area = False
if last_cropping_area:
if ball_detected and last_objects_detected == "ball":
# Check if the ball is within the last cropping area
x_min, y_min, x_max, y_max = last_cropping_area
if ball_box and (ball_box[0] >= x_min and ball_box[1] >= y_min and
ball_box[2] <= x_max and ball_box[3] <= y_max):
reuse_last_area = True
elif people_boxes and last_objects_detected == "people":
reuse_last_area = True
if reuse_last_area:
x_min, y_min, x_max, y_max = last_cropping_area
else:
# Calculate a new cropping area
if ball_detected:
x_min, y_min, x_max, y_max = ball_box
last_objects_detected = "ball"
elif people_boxes:
x_min, y_min, x_max, y_max = calculate_largest_group_box(people_boxes, original_width, original_height)
last_objects_detected = "people"
else:
# Default to center cropping
x_center, y_center = original_width // 2, original_height // 2
new_width = int(original_height * target_aspect_ratio)
new_height = int(original_width / target_aspect_ratio)
x_min = max(0, x_center - new_width // 2)
y_min = max(0, y_center - new_height // 2)
x_max = min(original_width, x_min + new_width)
y_max = min(original_height, y_min + new_height)
# Ensure crop size matches target aspect ratio
if (x_max - x_min) < new_width:
x_min = max(0, x_max - new_width)
if (y_max - y_min) < new_height:
y_min = max(0, y_max - new_height)
last_cropping_area = (x_min, y_min, x_max, y_max)
# Crop and resize the frame
frame_cropped = frame[int(y_min):int(y_max), int(x_min):int(x_max)]
frame_resized = cv2.resize(frame_cropped, target_resolution, interpolation=cv2.INTER_CUBIC)
# Save processed frame
output_path = os.path.join(output_folder, frame_name)
cv2.imwrite(output_path, frame_resized)
print("Completed preprocessing (Optimized for RAM).")
print(f"Total frames processed: {len(frame_files)}")
print(f"Total frames detected with a sports ball: {ball_counter}")
def calculate_largest_group_box(people_boxes, original_width, original_height):
"""
Calculate the bounding box for the densest group of people.
Args:
people_boxes (list of tuples): List of bounding boxes for detected people.
Each box is (x_min, y_min, x_max, y_max).
original_width (int): Width of the original frame.
original_height (int): Height of the original frame.
Returns:
tuple: Bounding box (x_min, y_min, x_max, y_max) for the densest group of people.
"""
if not people_boxes:
return None # Return None if no people boxes are provided
# Get the center points of all bounding boxes
centers = np.array([(int((x1 + x2) / 2), int((y1 + y2) / 2)) for x1, y1, x2, y2 in people_boxes])
# Calculate pairwise distances between all centers
distances = np.linalg.norm(centers[:, None, :] - centers[None, :, :], axis=2)
# Define a distance threshold for clustering. Adjust this value if needed
threshold = max(original_width, original_height) * 0.2 # TTP adjusted to 0.2 to allow bigger distance
# Perform clustering using a flood-fill approach
clusters = []
visited = set()
for i, center in enumerate(centers):
if i in visited:
continue
cluster = [i]
queue = [i]
visited.add(i)
for j in range(len(centers)):
if j not in visited and distances[i, j] < threshold:
cluster.append(j)
visited.add(j)
clusters.append(cluster)
# Find the largest cluster based on the number of people
largest_cluster = max(clusters, key=len)
# Calculate the bounding box for the largest cluster
x_min = min(people_boxes[i][0] for i in largest_cluster)
y_min = min(people_boxes[i][1] for i in largest_cluster)
x_max = max(people_boxes[i][2] for i in largest_cluster)
y_max = max(people_boxes[i][3] for i in largest_cluster)
# Expand the bounding box slightly to include some context
#padding_x = int(original_width * 0.05) # 5% padding horizontally
#padding_y = int(original_height * 0.05) # 5% padding vertically
#x_min = max(0, x_min - padding_x)
#y_min = max(0, y_min - padding_y)
#x_max = min(original_width, x_max + padding_x)
#y_max = min(original_height, y_max + padding_y)
return x_min, y_min, x_max, y_max
|