go back to 3 step appoach, increase model confidence, use ffmpeg
Browse files- app.py +11 -8
- handlers/frame_handler_yolo.py +5 -5
- handlers/video_handler.py +65 -53
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -11,7 +11,7 @@ from handlers import video_handler as vh
|
|
| 11 |
model_path = "yolov8n.pt" # YOLOv8 model path
|
| 12 |
|
| 13 |
|
| 14 |
-
@spaces.GPU(duration=
|
| 15 |
def process_video(video_file):
|
| 16 |
"""
|
| 17 |
Processes the uploaded video file by extracting key frames, cropping them, and generating a processed video.
|
|
@@ -50,17 +50,21 @@ def process_video(video_file):
|
|
| 50 |
status_message = "Extracting frames. Please wait...!"
|
| 51 |
yield status_message, None
|
| 52 |
|
| 53 |
-
# Step 1: Extract
|
| 54 |
-
|
| 55 |
-
vh.extract_frames_by_rate(video_path, all_frames_folder, frame_rate)
|
| 56 |
|
| 57 |
-
|
|
|
|
| 58 |
yield status_message, None
|
|
|
|
|
|
|
| 59 |
|
|
|
|
|
|
|
| 60 |
# Ignore step 2 (extract key frame), do Step 3: Crop key frames based on object detection
|
| 61 |
target_resolution = (360, 640) # Output resolution (9:16)
|
| 62 |
-
|
| 63 |
-
fh.crop_preserve_key_objects(all_frames_folder, cropped_frames_folder, model_path, target_resolution)
|
| 64 |
|
| 65 |
status_message = "Generating final video. Please wait...!"
|
| 66 |
yield status_message, None
|
|
@@ -72,7 +76,6 @@ def process_video(video_file):
|
|
| 72 |
status_message = "Processing complete!"
|
| 73 |
yield status_message, processed_video_path
|
| 74 |
|
| 75 |
-
|
| 76 |
# Gradio Blocks UI
|
| 77 |
with gr.Blocks() as demo:
|
| 78 |
gr.Markdown("## Generate short video for your football match")
|
|
|
|
| 11 |
model_path = "yolov8n.pt" # YOLOv8 model path
|
| 12 |
|
| 13 |
|
| 14 |
+
@spaces.GPU(duration=400)
|
| 15 |
def process_video(video_file):
|
| 16 |
"""
|
| 17 |
Processes the uploaded video file by extracting key frames, cropping them, and generating a processed video.
|
|
|
|
| 50 |
status_message = "Extracting frames. Please wait...!"
|
| 51 |
yield status_message, None
|
| 52 |
|
| 53 |
+
# Step 1: Extract all frames
|
| 54 |
+
vh.extract_frames_by_rate(video_path, all_frames_folder, original_fps)
|
|
|
|
| 55 |
|
| 56 |
+
#testing step 2 - extract key frames
|
| 57 |
+
status_message = "Extracting key frames. Please wait...!"
|
| 58 |
yield status_message, None
|
| 59 |
+
fh.extract_key_frames(all_frames_folder, key_frames_folder, original_fps, model_path)
|
| 60 |
+
#testing
|
| 61 |
|
| 62 |
+
status_message = "Cropping key frames. Please wait...!"
|
| 63 |
+
yield status_message, None
|
| 64 |
# Ignore step 2 (extract key frame), do Step 3: Crop key frames based on object detection
|
| 65 |
target_resolution = (360, 640) # Output resolution (9:16)
|
| 66 |
+
fh.crop_preserve_key_objects(key_frames_folder, cropped_frames_folder, model_path, target_resolution)
|
| 67 |
+
#fh.crop_preserve_key_objects(all_frames_folder, cropped_frames_folder, model_path, target_resolution)
|
| 68 |
|
| 69 |
status_message = "Generating final video. Please wait...!"
|
| 70 |
yield status_message, None
|
|
|
|
| 76 |
status_message = "Processing complete!"
|
| 77 |
yield status_message, processed_video_path
|
| 78 |
|
|
|
|
| 79 |
# Gradio Blocks UI
|
| 80 |
with gr.Blocks() as demo:
|
| 81 |
gr.Markdown("## Generate short video for your football match")
|
handlers/frame_handler_yolo.py
CHANGED
|
@@ -47,7 +47,7 @@ def extract_key_frames(input_folder, key_frames_folder, original_fps, model_path
|
|
| 47 |
# Load YOLO model once
|
| 48 |
model = YOLO(model_path)
|
| 49 |
|
| 50 |
-
# Maintain last
|
| 51 |
previous_nonkey_frames = deque(maxlen=original_fps)
|
| 52 |
processed_key_frames = set()
|
| 53 |
last_frame_was_key = False
|
|
@@ -68,16 +68,16 @@ def extract_key_frames(input_folder, key_frames_folder, original_fps, model_path
|
|
| 68 |
if counter % 1000 == 0:
|
| 69 |
print(f"Processed {counter} frames.")
|
| 70 |
# Run YOLO inference
|
| 71 |
-
results = model.predict(frame, conf=0.
|
| 72 |
|
| 73 |
# Check if a football (sports ball) is detected
|
| 74 |
ball_detected = any(model.names[int(box.cls)] == "sports ball" for box in results[0].boxes)
|
| 75 |
|
| 76 |
if ball_detected:
|
| 77 |
# TTP: to-do crop the frame
|
| 78 |
-
# Reclassify up to
|
| 79 |
if not last_frame_was_key:
|
| 80 |
-
for _ in range(min(len(previous_nonkey_frames),
|
| 81 |
nonkey_frame_name, nonkey_frame = previous_nonkey_frames.popleft()
|
| 82 |
if nonkey_frame_name not in processed_key_frames:
|
| 83 |
cv2.imwrite(os.path.join(key_frames_folder, nonkey_frame_name), nonkey_frame)
|
|
@@ -145,7 +145,7 @@ def crop_preserve_key_objects(input_folder, output_folder, model_path='yolov8n.p
|
|
| 145 |
new_height = int(original_width / target_aspect_ratio)
|
| 146 |
|
| 147 |
# YOLO inference
|
| 148 |
-
results = model.predict(frame, conf=0.
|
| 149 |
|
| 150 |
# Initialize variables
|
| 151 |
ball_detected = False
|
|
|
|
| 47 |
# Load YOLO model once
|
| 48 |
model = YOLO(model_path)
|
| 49 |
|
| 50 |
+
# Maintain last non-key frames for reclassification, max = original_fps
|
| 51 |
previous_nonkey_frames = deque(maxlen=original_fps)
|
| 52 |
processed_key_frames = set()
|
| 53 |
last_frame_was_key = False
|
|
|
|
| 68 |
if counter % 1000 == 0:
|
| 69 |
print(f"Processed {counter} frames.")
|
| 70 |
# Run YOLO inference
|
| 71 |
+
results = model.predict(frame, conf=0.7, verbose=False)
|
| 72 |
|
| 73 |
# Check if a football (sports ball) is detected
|
| 74 |
ball_detected = any(model.names[int(box.cls)] == "sports ball" for box in results[0].boxes)
|
| 75 |
|
| 76 |
if ball_detected:
|
| 77 |
# TTP: to-do crop the frame
|
| 78 |
+
# Reclassify up to {original_fps} previous non-key frames
|
| 79 |
if not last_frame_was_key:
|
| 80 |
+
for _ in range(min(len(previous_nonkey_frames), original_fps)):
|
| 81 |
nonkey_frame_name, nonkey_frame = previous_nonkey_frames.popleft()
|
| 82 |
if nonkey_frame_name not in processed_key_frames:
|
| 83 |
cv2.imwrite(os.path.join(key_frames_folder, nonkey_frame_name), nonkey_frame)
|
|
|
|
| 145 |
new_height = int(original_width / target_aspect_ratio)
|
| 146 |
|
| 147 |
# YOLO inference
|
| 148 |
+
results = model.predict(frame, conf=0.7, verbose=False)
|
| 149 |
|
| 150 |
# Initialize variables
|
| 151 |
ball_detected = False
|
handlers/video_handler.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import cv2
|
| 3 |
|
| 4 |
import functools
|
|
@@ -20,61 +22,71 @@ def timer_decorator(func):
|
|
| 20 |
|
| 21 |
@timer_decorator
|
| 22 |
def extract_frames_by_rate(video_path, output_folder, frame_rate):
|
| 23 |
-
"""
|
| 24 |
-
Extracts frames from a video at a specified frame rate.
|
| 25 |
-
|
| 26 |
-
Args:
|
| 27 |
-
video_path (str): Path to the input video file.
|
| 28 |
-
output_folder (str): Directory to save the extracted frames.
|
| 29 |
-
frame_rate (int): Number of frames to extract per second of the video.
|
| 30 |
-
"""
|
| 31 |
-
# Ensure the output directory exists
|
| 32 |
if not os.path.exists(output_folder):
|
| 33 |
os.makedirs(output_folder)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
@timer_decorator
|
|
|
|
| 1 |
import os
|
| 2 |
+
import subprocess
|
| 3 |
+
|
| 4 |
import cv2
|
| 5 |
|
| 6 |
import functools
|
|
|
|
| 22 |
|
| 23 |
@timer_decorator
|
| 24 |
def extract_frames_by_rate(video_path, output_folder, frame_rate):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
if not os.path.exists(output_folder):
|
| 26 |
os.makedirs(output_folder)
|
| 27 |
+
cmd = [
|
| 28 |
+
'ffmpeg',
|
| 29 |
+
'-i', video_path,
|
| 30 |
+
'-vf', f'fps={frame_rate}',
|
| 31 |
+
os.path.join(output_folder, 'frame_%05d.jpg')
|
| 32 |
+
]
|
| 33 |
+
subprocess.run(cmd, check=True)
|
| 34 |
+
|
| 35 |
+
# def extract_frames_by_rate(video_path, output_folder, frame_rate):
|
| 36 |
+
# """
|
| 37 |
+
# Extracts frames from a video at a specified frame rate.
|
| 38 |
+
#
|
| 39 |
+
# Args:
|
| 40 |
+
# video_path (str): Path to the input video file.
|
| 41 |
+
# output_folder (str): Directory to save the extracted frames.
|
| 42 |
+
# frame_rate (int): Number of frames to extract per second of the video.
|
| 43 |
+
# """
|
| 44 |
+
# # Ensure the output directory exists
|
| 45 |
+
# if not os.path.exists(output_folder):
|
| 46 |
+
# os.makedirs(output_folder)
|
| 47 |
+
#
|
| 48 |
+
# # Load the video
|
| 49 |
+
# video = cv2.VideoCapture(video_path)
|
| 50 |
+
#
|
| 51 |
+
# # Check if the video is opened successfully
|
| 52 |
+
# if not video.isOpened():
|
| 53 |
+
# print(f"Error: Cannot open video file {video_path}")
|
| 54 |
+
# return
|
| 55 |
+
#
|
| 56 |
+
# # Get video properties
|
| 57 |
+
# fps = int(video.get(cv2.CAP_PROP_FPS)) # Frames per second
|
| 58 |
+
# total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) # Total number of frames
|
| 59 |
+
# duration = total_frames / fps # Duration in seconds
|
| 60 |
+
#
|
| 61 |
+
# print(f"Video loaded: {video_path}")
|
| 62 |
+
# print(f"Total Frames: {total_frames}, FPS: {fps}, Duration: {duration:.2f} seconds")
|
| 63 |
+
#
|
| 64 |
+
# # Calculate frame interval (in terms of frame number)
|
| 65 |
+
# frame_interval = fps // frame_rate
|
| 66 |
+
#
|
| 67 |
+
# # Frame counter
|
| 68 |
+
# frame_count = 0
|
| 69 |
+
# saved_count = 0
|
| 70 |
+
#
|
| 71 |
+
# while True:
|
| 72 |
+
# # Read a frame
|
| 73 |
+
# ret, frame = video.read()
|
| 74 |
+
#
|
| 75 |
+
# # Break the loop if the video ends
|
| 76 |
+
# if not ret:
|
| 77 |
+
# break
|
| 78 |
+
#
|
| 79 |
+
# # Save frame if it matches the frame interval
|
| 80 |
+
# if frame_count % frame_interval == 0:
|
| 81 |
+
# frame_filename = os.path.join(output_folder, f"frame_{saved_count:05d}.jpg")
|
| 82 |
+
# cv2.imwrite(frame_filename, frame)
|
| 83 |
+
# saved_count += 1
|
| 84 |
+
#
|
| 85 |
+
# frame_count += 1
|
| 86 |
+
#
|
| 87 |
+
# # Release video resources
|
| 88 |
+
# video.release()
|
| 89 |
+
# print(f"Extraction complete. Total frames saved: {saved_count}. FPS used to extracted: {frame_rate}")
|
| 90 |
|
| 91 |
|
| 92 |
@timer_decorator
|
requirements.txt
CHANGED
|
@@ -3,3 +3,4 @@ numpy==2.2.3
|
|
| 3 |
opencv_python==4.11.0.86
|
| 4 |
spaces==0.32.0
|
| 5 |
ultralytics==8.3.64
|
|
|
|
|
|
| 3 |
opencv_python==4.11.0.86
|
| 4 |
spaces==0.32.0
|
| 5 |
ultralytics==8.3.64
|
| 6 |
+
ffmpeg-python==0.2.0
|