Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
# Initialize MediaPipe Pose | |
mp_pose = mp.solutions.pose | |
pose = mp_pose.Pose(static_image_mode=True) | |
mp_drawing = mp.solutions.drawing_utils | |
mp_pose_landmark = mp_pose.PoseLandmark | |
def detect_pose(image): | |
# Convert to RGB | |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Run pose detection | |
result = pose.process(image_rgb) | |
keypoints = {} | |
if result.pose_landmarks: | |
# Draw landmarks on image | |
mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS) | |
# Get image dimensions | |
height, width, _ = image.shape | |
# Extract specific landmarks | |
landmark_indices = { | |
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER, | |
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER, | |
'left_hip': mp_pose_landmark.LEFT_HIP, | |
'right_hip': mp_pose_landmark.RIGHT_HIP | |
} | |
for name, index in landmark_indices.items(): | |
lm = result.pose_landmarks.landmark[index] | |
x, y = int(lm.x * width), int(lm.y * height) | |
keypoints[name] = (x, y) | |
# Draw a circle + label for debug | |
cv2.circle(image, (x, y), 5, (0, 255, 0), -1) | |
cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) | |
return image, keypoints | |
# Gradio interface | |
iface = gr.Interface( | |
fn=detect_pose, | |
inputs=gr.Image(type="numpy", label="Upload Full-Body Image"), | |
outputs=[ | |
gr.Image(type="numpy", label="Pose Visualization"), | |
gr.JSON(label="Extracted Keypoints") | |
], | |
title="Virtual Try-On - Pose Detection", | |
description="Detects body keypoints using MediaPipe Pose and visualizes them. Shoulders and hips are labeled." | |
) | |
if __name__ == "__main__": | |
iface.launch() |