Spaces:
Running
Running
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import mediapipe as mp
|
5 |
+
|
6 |
+
# Initialize MediaPipe Pose
|
7 |
+
mp_pose = mp.solutions.pose
|
8 |
+
pose = mp_pose.Pose(static_image_mode=True)
|
9 |
+
mp_drawing = mp.solutions.drawing_utils
|
10 |
+
mp_pose_landmark = mp_pose.PoseLandmark
|
11 |
+
|
12 |
+
def detect_pose(image):
|
13 |
+
# Convert to RGB
|
14 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
15 |
+
|
16 |
+
# Run pose detection
|
17 |
+
result = pose.process(image_rgb)
|
18 |
+
|
19 |
+
keypoints = {}
|
20 |
+
|
21 |
+
if result.pose_landmarks:
|
22 |
+
# Draw landmarks on image
|
23 |
+
mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)
|
24 |
+
|
25 |
+
# Get image dimensions
|
26 |
+
height, width, _ = image.shape
|
27 |
+
|
28 |
+
# Extract specific landmarks
|
29 |
+
landmark_indices = {
|
30 |
+
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER,
|
31 |
+
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER,
|
32 |
+
'left_hip': mp_pose_landmark.LEFT_HIP,
|
33 |
+
'right_hip': mp_pose_landmark.RIGHT_HIP
|
34 |
+
}
|
35 |
+
|
36 |
+
for name, index in landmark_indices.items():
|
37 |
+
lm = result.pose_landmarks.landmark[index]
|
38 |
+
x, y = int(lm.x * width), int(lm.y * height)
|
39 |
+
keypoints[name] = (x, y)
|
40 |
+
|
41 |
+
# Draw a circle + label for debug
|
42 |
+
cv2.circle(image, (x, y), 5, (0, 255, 0), -1)
|
43 |
+
cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
44 |
+
|
45 |
+
return image, keypoints
|
46 |
+
|
47 |
+
# Gradio interface
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=detect_pose,
|
50 |
+
inputs=gr.Image(type="numpy", label="Upload Full-Body Image"),
|
51 |
+
outputs=[
|
52 |
+
gr.Image(type="numpy", label="Pose Visualization"),
|
53 |
+
gr.JSON(label="Extracted Keypoints")
|
54 |
+
],
|
55 |
+
title="Virtual Try-On - Pose Detection",
|
56 |
+
description="Detects body keypoints using MediaPipe Pose and visualizes them. Shoulders and hips are labeled."
|
57 |
+
)
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
iface.launch()
|