Spaces:
Running
Running
Daily Update, First Release for model 1012
Browse files- RequestModel.py +8 -0
- app.py +22 -10
- blkeras.py +176 -88
- preprocess.py +97 -40
- us_stock.py +18 -40
RequestModel.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from typing import Optional, List
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
|
| 5 |
+
class PredictRequest(BaseModel):
|
| 6 |
+
text: str
|
| 7 |
+
stock_codes: Optional[List[str]] = None # 定义为可选字段,可以是一个字符串列表
|
| 8 |
+
|
app.py
CHANGED
|
@@ -6,6 +6,9 @@ from fastapi.middleware.wsgi import WSGIMiddleware
|
|
| 6 |
|
| 7 |
from transformers import pipeline
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
app = FastAPI() # 创建 FastAPI 应用
|
| 10 |
|
| 11 |
# 定义请求模型
|
|
@@ -37,20 +40,29 @@ async def api_bbb(request: TextRequest):
|
|
| 37 |
return {"result": result}
|
| 38 |
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
output = pipe_flan(input)
|
| 45 |
-
return {"output": output[0]["generated_text"]}
|
| 46 |
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
@app.get("/")
|
| 54 |
async def root():
|
| 55 |
return {"message": "Welcome to the API. Use /api/aaa or /api/bbb for processing."}
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
from transformers import pipeline
|
| 8 |
|
| 9 |
+
from RequestModel import PredictRequest
|
| 10 |
+
from us_stock import fetch_symbols
|
| 11 |
+
|
| 12 |
app = FastAPI() # 创建 FastAPI 应用
|
| 13 |
|
| 14 |
# 定义请求模型
|
|
|
|
| 40 |
return {"result": result}
|
| 41 |
|
| 42 |
|
| 43 |
+
@app.on_event("startup")
|
| 44 |
+
async def initialize_symbols():
|
| 45 |
+
# 在 FastAPI 启动时初始化变量
|
| 46 |
+
await fetch_symbols()
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
@app.post("/api/predict")
|
| 49 |
+
async def predict(request: PredictRequest):
|
| 50 |
+
from blkeras import predict
|
| 51 |
|
| 52 |
+
try:
|
| 53 |
+
input_text = request.text # FastAPI 会自动解析为 PredictRequest 对象
|
| 54 |
+
affected_stock_codes = request.stock_codes
|
| 55 |
+
print("Input text:", input_text)
|
| 56 |
+
print("Affected stock codes:", affected_stock_codes)
|
| 57 |
+
return predict(input_text, affected_stock_codes)
|
| 58 |
+
except Exception as e:
|
| 59 |
+
return {"error": str(e)}
|
| 60 |
|
| 61 |
@app.get("/")
|
| 62 |
async def root():
|
| 63 |
return {"message": "Welcome to the API. Use /api/aaa or /api/bbb for processing."}
|
| 64 |
|
| 65 |
+
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
import uvicorn
|
| 68 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
blkeras.py
CHANGED
|
@@ -19,6 +19,8 @@ from datetime import datetime, timedelta
|
|
| 19 |
|
| 20 |
import os
|
| 21 |
|
|
|
|
|
|
|
| 22 |
from us_stock import find_stock_codes_or_names
|
| 23 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 24 |
|
|
@@ -39,7 +41,7 @@ if model is None:
|
|
| 39 |
|
| 40 |
# 下载模型到本地
|
| 41 |
model_path = hf_hub_download(repo_id="parkerjj/BuckLake-Stock-Model",
|
| 42 |
-
filename="
|
| 43 |
use_auth_token=hf_token)
|
| 44 |
|
| 45 |
# 使用 Keras 加载模型
|
|
@@ -78,20 +80,13 @@ def generate_fake_accuracy():
|
|
| 78 |
|
| 79 |
|
| 80 |
|
| 81 |
-
def predict():
|
| 82 |
from tensorflow.keras.preprocessing.sequence import pad_sequences # type: ignore
|
| 83 |
from preprocess import get_document_vector, get_stock_info, preprocessing_entry, process_entities, process_pos_tags, processing_entry
|
| 84 |
|
| 85 |
try:
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
# 解析请求数据,获取文本字符串
|
| 90 |
-
if 'text' not in data:
|
| 91 |
-
raise ValueError("Missing 'text' field in input data")
|
| 92 |
-
|
| 93 |
-
input_text = data['text']
|
| 94 |
-
affected_stock_codes = data.get('stock_codes', None)
|
| 95 |
|
| 96 |
|
| 97 |
print(f"predict() Input text: {input_text}")
|
|
@@ -118,18 +113,30 @@ def predict():
|
|
| 118 |
# 检查缓存中是否已有结果
|
| 119 |
if cache_key in prediction_cache:
|
| 120 |
print(f"Cache hit: {cache_key} lemmatized_entry: {lemmatized_entry} value: {prediction_cache[cache_key]}" )
|
| 121 |
-
return
|
| 122 |
|
| 123 |
|
| 124 |
# 调用 get_stock_info 函数
|
| 125 |
-
|
| 126 |
-
previous_stock_history, following_stock_history, previous_stock_index_history, following_stock_index_history = stock_info
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
# 3. 将特征转换为适合模型输入的形状
|
| 135 |
# 这里假设文本、POS、实体识别等是向量,时间序列特征是 (sequence_length, feature_dim) 的形状
|
|
@@ -163,36 +170,39 @@ def predict():
|
|
| 163 |
# 情感得分
|
| 164 |
X_sentiment = np.array([[sentiment_score]], dtype='float32') # sentiment_score 已经是单值,直接转换为二维数组
|
| 165 |
|
| 166 |
-
# 构造其他特征
|
| 167 |
-
# 将时间序列特征转换为合适的形状
|
| 168 |
-
# 确保 index_feature 和 stock_feature 的形状为 (1, 4, 6)
|
| 169 |
-
index_feature = np.array(previous_stock_index_history, dtype='float32').reshape(1, 4, 6)
|
| 170 |
-
stock_feature = np.array(previous_stock_history, dtype='float32').reshape(1, 4, 6)
|
| 171 |
-
|
| 172 |
-
print("index_feature values:", index_feature)
|
| 173 |
-
print("stock_feature values:", stock_feature)
|
| 174 |
-
|
| 175 |
# 打印输入特征的形状,便于调试
|
| 176 |
print("X_word2vec shape:", X_word2vec.shape)
|
| 177 |
print("X_pos_tags shape:", X_pos_tags.shape)
|
| 178 |
print("X_entities shape:", X_entities.shape)
|
| 179 |
print("X_sentiment shape:", X_sentiment.shape)
|
| 180 |
-
print("index_feature shape:", index_feature.shape)
|
| 181 |
-
print("stock_feature shape:", stock_feature.shape)
|
| 182 |
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
features = [
|
| 185 |
-
X_word2vec,
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
index_feature, # index_input (batch_size, sequence_length, feature_dim) => (1, 4, 6)
|
| 190 |
-
stock_feature # stock_input (batch_size, sequence_length, feature_dim) => (1, 4, 6)
|
| 191 |
]
|
| 192 |
|
|
|
|
|
|
|
| 193 |
# 打印特征数组的每个元素的形状,便于调试
|
| 194 |
-
for i, feature in enumerate(features):
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
# 使用模型进行预测
|
| 198 |
predictions = model.predict(features)
|
|
@@ -201,33 +211,80 @@ def predict():
|
|
| 201 |
fake_accuracy = generate_fake_accuracy()
|
| 202 |
|
| 203 |
# 将 predictions 中的每个数组转换为 Python 列表
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
# 打印预测结果,便于调试
|
| 208 |
-
print("Index Predictions:",
|
|
|
|
|
|
|
|
|
|
| 209 |
print("Stock Predictions:", stock_predictions)
|
| 210 |
|
| 211 |
|
| 212 |
|
| 213 |
|
| 214 |
# 获取 index_feature 中最后一天的第一个值
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
# 提取 Index Predictions 中每一天的第一个值
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
# 计算 impact_1_day, impact_2_day, impact_3_day
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
# 将 impact 值转换为百分比字符串
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
|
| 233 |
# 如果需要返回原始预测数据进行调试,可以直接将其放到响应中
|
|
@@ -239,15 +296,24 @@ def predict():
|
|
| 239 |
|
| 240 |
|
| 241 |
# 针对 926 模型的修复
|
| 242 |
-
stock_predictions =
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
print("Stock Predictions after fix:", stock_predictions)
|
| 246 |
-
print("Index Predictions after fix:",
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
# 扩展股票预测数据到分钟级别
|
| 249 |
stock_predictions = extend_stock_days_to_mins(stock_predictions)
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
|
| 253 |
|
|
@@ -255,13 +321,25 @@ def predict():
|
|
| 255 |
result = {
|
| 256 |
"news_title": input_text,
|
| 257 |
"ai_prediction_score": float(X_sentiment[0][0]), # 假设第一个预测值是 AI 预测得分
|
| 258 |
-
"
|
| 259 |
-
"
|
| 260 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
"affected_stock_codes": affected_stock_codes_str, # 动态生成受影响的股票代码
|
| 262 |
"accuracy": float(fake_accuracy),
|
| 263 |
"impact_on_stock": stock_predictions, # 第��个预测值是股票影响
|
| 264 |
-
"
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
}
|
| 267 |
|
|
@@ -275,50 +353,60 @@ def predict():
|
|
| 275 |
print(f"predict() result: {result}")
|
| 276 |
|
| 277 |
# 返回预测结果
|
| 278 |
-
return
|
| 279 |
|
| 280 |
except Exception as e:
|
| 281 |
# 打印完整的错误堆栈信息
|
| 282 |
traceback_str = traceback.print_exc()
|
| 283 |
print(f"predict() error: {e}")
|
| 284 |
print(traceback_str)
|
| 285 |
-
return
|
| 286 |
|
| 287 |
|
| 288 |
-
def
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
coefficient = 1.2 # 调整系数,可以根据需要微调
|
| 291 |
smoothing_factor = 0.7 # 平滑因子,控制曲线平滑度
|
| 292 |
window_size = 3 # 滚动平均窗口大小
|
| 293 |
|
| 294 |
smoothed_predictions = [] # 用于存储平滑后的预测
|
| 295 |
|
| 296 |
-
# day0 = predictions[0]
|
| 297 |
-
# day0[0] = last_price
|
| 298 |
-
# predictions.insert(0, day0) # 将最后一天的价格插入到预测列表的第一个位置
|
| 299 |
-
|
| 300 |
for i, day in enumerate(predictions):
|
| 301 |
-
|
| 302 |
-
last_price = 1
|
| 303 |
-
|
| 304 |
-
# 计算波动系数,并限制其在一个较小的范围内
|
| 305 |
-
fluctuation = random.uniform(-0.01, 0.01)
|
| 306 |
-
|
| 307 |
-
# 当前预测值的修正
|
| 308 |
-
day[0] = ((abs(day[0]) * score * coefficient / last_price / 10 / 100) + (1 + fluctuation)) * last_price
|
| 309 |
-
|
| 310 |
-
# 滚动平均平滑
|
| 311 |
-
if i >= window_size:
|
| 312 |
-
# 计算之前窗口的平均值
|
| 313 |
-
smoothed_value = (sum([smoothed_predictions[j][0] for j in range(i - window_size, i)]) / window_size)
|
| 314 |
-
day[0] = smoothing_factor * smoothed_value + (1 - smoothing_factor) * day[0]
|
| 315 |
-
|
| 316 |
-
# 更新最后一天的价格,用于下一个迭代
|
| 317 |
-
last_price = day[0]
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
return smoothed_predictions
|
| 323 |
|
| 324 |
|
|
|
|
| 19 |
|
| 20 |
import os
|
| 21 |
|
| 22 |
+
from RequestModel import PredictRequest
|
| 23 |
+
from app import TextRequest
|
| 24 |
from us_stock import find_stock_codes_or_names
|
| 25 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 26 |
|
|
|
|
| 41 |
|
| 42 |
# 下载模型到本地
|
| 43 |
model_path = hf_hub_download(repo_id="parkerjj/BuckLake-Stock-Model",
|
| 44 |
+
filename="stock_prediction_model_1012.keras",
|
| 45 |
use_auth_token=hf_token)
|
| 46 |
|
| 47 |
# 使用 Keras 加载模型
|
|
|
|
| 80 |
|
| 81 |
|
| 82 |
|
| 83 |
+
def predict(text: str, stock_codes: list):
|
| 84 |
from tensorflow.keras.preprocessing.sequence import pad_sequences # type: ignore
|
| 85 |
from preprocess import get_document_vector, get_stock_info, preprocessing_entry, process_entities, process_pos_tags, processing_entry
|
| 86 |
|
| 87 |
try:
|
| 88 |
+
input_text = text
|
| 89 |
+
affected_stock_codes = stock_codes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
print(f"predict() Input text: {input_text}")
|
|
|
|
| 113 |
# 检查缓存中是否已有结果
|
| 114 |
if cache_key in prediction_cache:
|
| 115 |
print(f"Cache hit: {cache_key} lemmatized_entry: {lemmatized_entry} value: {prediction_cache[cache_key]}" )
|
| 116 |
+
return prediction_cache[cache_key]
|
| 117 |
|
| 118 |
|
| 119 |
# 调用 get_stock_info 函数
|
| 120 |
+
previous_stock_history, _, previous_stock_inx_index_history, previous_stock_dj_index_history, previous_stock_ixic_index_history, previous_stock_ndx_index_history, _, _, _, _ = get_stock_info(affected_stock_codes)
|
|
|
|
| 121 |
|
| 122 |
+
|
| 123 |
+
def ensure_fixed_shape(data, shape, variable_name=""):
|
| 124 |
+
data = np.array(data)
|
| 125 |
+
if data.shape != shape:
|
| 126 |
+
fixed_data = np.full(shape, -1)
|
| 127 |
+
min_shape = tuple(min(s1, s2) for s1, s2 in zip(data.shape, shape))
|
| 128 |
+
fixed_data[:min_shape[0], :min_shape[1], :min_shape[2]] = data[:min_shape[0], :min_shape[1], :min_shape[2]]
|
| 129 |
+
return fixed_data
|
| 130 |
+
return data
|
| 131 |
+
|
| 132 |
+
previous_stock_history = ensure_fixed_shape(previous_stock_history, (1, 30, 6), "previous_stock_history")
|
| 133 |
+
previous_stock_inx_index_history = ensure_fixed_shape(previous_stock_inx_index_history, (1, 30, 6), "previous_stock_inx_index_history")
|
| 134 |
+
previous_stock_dj_index_history = ensure_fixed_shape(previous_stock_dj_index_history, (1, 30, 6), "previous_stock_dj_index_history")
|
| 135 |
+
previous_stock_ixic_index_history = ensure_fixed_shape(previous_stock_ixic_index_history, (1, 30, 6), "previous_stock_ixic_index_history")
|
| 136 |
+
previous_stock_ndx_index_history = ensure_fixed_shape(previous_stock_ndx_index_history, (1, 30, 6), "previous_stock_ndx_index_history")
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
|
| 141 |
# 3. 将特征转换为适合模型输入的形状
|
| 142 |
# 这里假设文本、POS、实体识别等是向量,时间序列特征是 (sequence_length, feature_dim) 的形状
|
|
|
|
| 170 |
# 情感得分
|
| 171 |
X_sentiment = np.array([[sentiment_score]], dtype='float32') # sentiment_score 已经是单值,直接转换为二维数组
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
# 打印输入特征的形状,便于调试
|
| 174 |
print("X_word2vec shape:", X_word2vec.shape)
|
| 175 |
print("X_pos_tags shape:", X_pos_tags.shape)
|
| 176 |
print("X_entities shape:", X_entities.shape)
|
| 177 |
print("X_sentiment shape:", X_sentiment.shape)
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
# 静态特��
|
| 182 |
+
X_word2vec = ensure_fixed_shape(X_word2vec, (1, 300), "X_word2vec")
|
| 183 |
+
X_pos_tags = ensure_fixed_shape(X_pos_tags, (1, 1024), "X_pos_tags")
|
| 184 |
+
X_entities = ensure_fixed_shape(X_entities, (1, 1024), "X_entities")
|
| 185 |
+
X_sentiment = ensure_fixed_shape(X_sentiment, (1, 1), "X_sentiment")
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
features = [
|
| 190 |
+
X_word2vec, X_pos_tags, X_entities, X_sentiment,
|
| 191 |
+
previous_stock_inx_index_history, previous_stock_dj_index_history,
|
| 192 |
+
previous_stock_ixic_index_history, previous_stock_ndx_index_history,
|
| 193 |
+
previous_stock_history
|
|
|
|
|
|
|
| 194 |
]
|
| 195 |
|
| 196 |
+
|
| 197 |
+
|
| 198 |
# 打印特征数组的每个元素的形状,便于调试
|
| 199 |
+
# for i, feature in enumerate(features):
|
| 200 |
+
# print(f"Feature {i} shape: {feature.shape} value: {feature[0]} length: {len(feature[0])}")
|
| 201 |
+
for name, feature in enumerate(features):
|
| 202 |
+
print(f"模型输入数据 {name} shape: {feature.shape}")
|
| 203 |
+
|
| 204 |
+
for layer in model.input:
|
| 205 |
+
print(f"模型所需的输入层 {layer.name}, 形状: {layer.shape}")
|
| 206 |
|
| 207 |
# 使用模型进行预测
|
| 208 |
predictions = model.predict(features)
|
|
|
|
| 211 |
fake_accuracy = generate_fake_accuracy()
|
| 212 |
|
| 213 |
# 将 predictions 中的每个数组转换为 Python 列表
|
| 214 |
+
index_inx_predictions = predictions[0].tolist()
|
| 215 |
+
index_dj_predictions = predictions[1].tolist()
|
| 216 |
+
index_ixic_predictions = predictions[2].tolist()
|
| 217 |
+
index_ndx_predictions = predictions[3].tolist()
|
| 218 |
+
stock_predictions = predictions[4].tolist()
|
| 219 |
+
|
| 220 |
+
print(f"Original predictions: {predictions}")
|
| 221 |
|
| 222 |
# 打印预测结果,便于调试
|
| 223 |
+
print("Index INX Predictions:", index_inx_predictions)
|
| 224 |
+
print("Index DJ Predictions:", index_dj_predictions)
|
| 225 |
+
print("Index IXIC Predictions:", index_ixic_predictions)
|
| 226 |
+
print("Index NDX Predictions:", index_ndx_predictions)
|
| 227 |
print("Stock Predictions:", stock_predictions)
|
| 228 |
|
| 229 |
|
| 230 |
|
| 231 |
|
| 232 |
# 获取 index_feature 中最后一天的第一个值
|
| 233 |
+
last_index_inx_value = previous_stock_inx_index_history[0][-1][0]
|
| 234 |
+
last_index_dj_value = previous_stock_dj_index_history[0][-1][0]
|
| 235 |
+
last_index_ixic_value = previous_stock_ixic_index_history[0][-1][0]
|
| 236 |
+
last_index_ndx_value = previous_stock_ndx_index_history[0][-1][0]
|
| 237 |
|
| 238 |
# 提取 Index Predictions 中每一天的第一个值
|
| 239 |
+
index_inx_day_1 = index_inx_predictions[0][0][0]
|
| 240 |
+
index_inx_day_2 = index_inx_predictions[0][1][0]
|
| 241 |
+
index_inx_day_3 = index_inx_predictions[0][2][0]
|
| 242 |
+
|
| 243 |
+
index_dj_day_1 = index_dj_predictions[0][0][0]
|
| 244 |
+
index_dj_day_2 = index_dj_predictions[0][1][0]
|
| 245 |
+
index_dj_day_3 = index_dj_predictions[0][2][0]
|
| 246 |
+
|
| 247 |
+
index_ixic_day_1 = index_ixic_predictions[0][0][0]
|
| 248 |
+
index_ixic_day_2 = index_ixic_predictions[0][1][0]
|
| 249 |
+
index_ixic_day_3 = index_ixic_predictions[0][2][0]
|
| 250 |
+
|
| 251 |
+
index_ndx_day_1 = index_ndx_predictions[0][0][0]
|
| 252 |
+
index_ndx_day_2 = index_ndx_predictions[0][1][0]
|
| 253 |
+
index_ndx_day_3 = index_ndx_predictions[0][2][0]
|
| 254 |
|
| 255 |
# 计算 impact_1_day, impact_2_day, impact_3_day
|
| 256 |
+
impact_inx_1_day = (index_inx_day_1 - last_index_inx_value) / last_index_inx_value
|
| 257 |
+
impact_inx_2_day = (index_inx_day_2 - index_inx_day_1) / index_inx_day_1
|
| 258 |
+
impact_inx_3_day = (index_inx_day_3 - index_inx_day_2) / index_inx_day_2
|
| 259 |
+
|
| 260 |
+
impact_dj_1_day = (index_dj_day_1 - last_index_dj_value) / last_index_dj_value
|
| 261 |
+
impact_dj_2_day = (index_dj_day_2 - index_dj_day_1) / index_dj_day_1
|
| 262 |
+
impact_dj_3_day = (index_dj_day_3 - index_dj_day_2) / index_dj_day_2
|
| 263 |
+
|
| 264 |
+
impact_ixic_1_day = (index_ixic_day_1 - last_index_ixic_value) / last_index_ixic_value
|
| 265 |
+
impact_ixic_2_day = (index_ixic_day_2 - index_ixic_day_1) / index_ixic_day_1
|
| 266 |
+
impact_ixic_3_day = (index_ixic_day_3 - index_ixic_day_2) / index_ixic_day_2
|
| 267 |
+
|
| 268 |
+
impact_ndx_1_day = (index_ndx_day_1 - last_index_ndx_value) / last_index_ndx_value
|
| 269 |
+
impact_ndx_2_day = (index_ndx_day_2 - index_ndx_day_1) / index_ndx_day_1
|
| 270 |
+
impact_ndx_3_day = (index_ndx_day_3 - index_ndx_day_2) / index_ndx_day_2
|
| 271 |
|
| 272 |
# 将 impact 值转换为百分比字符串
|
| 273 |
+
impact_inx_1_day_str = f"{impact_inx_1_day:.2%}"
|
| 274 |
+
impact_inx_2_day_str = f"{impact_inx_2_day:.2%}"
|
| 275 |
+
impact_inx_3_day_str = f"{impact_inx_3_day:.2%}"
|
| 276 |
+
|
| 277 |
+
impact_dj_1_day_str = f"{impact_dj_1_day:.2%}"
|
| 278 |
+
impact_dj_2_day_str = f"{impact_dj_2_day:.2%}"
|
| 279 |
+
impact_dj_3_day_str = f"{impact_dj_3_day:.2%}"
|
| 280 |
+
|
| 281 |
+
impact_ixic_1_day_str = f"{impact_ixic_1_day:.2%}"
|
| 282 |
+
impact_ixic_2_day_str = f"{impact_ixic_2_day:.2%}"
|
| 283 |
+
impact_ixic_3_day_str = f"{impact_ixic_3_day:.2%}"
|
| 284 |
+
|
| 285 |
+
impact_ndx_1_day_str = f"{impact_ndx_1_day:.2%}"
|
| 286 |
+
impact_ndx_2_day_str = f"{impact_ndx_2_day:.2%}"
|
| 287 |
+
impact_ndx_3_day_str = f"{impact_ndx_3_day:.2%}"
|
| 288 |
|
| 289 |
|
| 290 |
# 如果需要返回原始预测数据进行调试,可以直接将其放到响应中
|
|
|
|
| 296 |
|
| 297 |
|
| 298 |
# 针对 926 模型的修复
|
| 299 |
+
stock_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), stock_predictions[0], previous_stock_history[0][-1][0])
|
| 300 |
+
index_inx_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_inx_predictions[0], last_index_inx_value)
|
| 301 |
+
index_dj_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_dj_predictions[0], last_index_dj_value)
|
| 302 |
+
index_ixic_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_ixic_predictions[0], last_index_ixic_value)
|
| 303 |
+
index_ndx_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_ndx_predictions[0], last_index_ndx_value)
|
| 304 |
|
| 305 |
print("Stock Predictions after fix:", stock_predictions)
|
| 306 |
+
print("Index INX Predictions after fix:", index_inx_predictions)
|
| 307 |
+
print("Index DJ Predictions after fix:", index_dj_predictions)
|
| 308 |
+
print("Index IXIC Predictions after fix:", index_ixic_predictions)
|
| 309 |
+
print("Index NDX Predictions after fix:", index_ndx_predictions)
|
| 310 |
|
| 311 |
# 扩展股票预测数据到分钟级别
|
| 312 |
stock_predictions = extend_stock_days_to_mins(stock_predictions)
|
| 313 |
+
index_inx_predictions = extend_stock_days_to_mins(index_inx_predictions)
|
| 314 |
+
index_dj_predictions = extend_stock_days_to_mins(index_dj_predictions)
|
| 315 |
+
index_ixic_predictions = extend_stock_days_to_mins(index_ixic_predictions)
|
| 316 |
+
index_ndx_predictions = extend_stock_days_to_mins(index_ndx_predictions)
|
| 317 |
|
| 318 |
|
| 319 |
|
|
|
|
| 321 |
result = {
|
| 322 |
"news_title": input_text,
|
| 323 |
"ai_prediction_score": float(X_sentiment[0][0]), # 假设第一个预测值是 AI 预测得分
|
| 324 |
+
"impact_inx_1_day": impact_inx_1_day_str, # 计算并格式化 impact_1_day
|
| 325 |
+
"impac_inx_2_day": impact_inx_2_day_str, # 计算并格式化 impact_2_day
|
| 326 |
+
"impact_inx_3_day": impact_inx_3_day_str,
|
| 327 |
+
"impact_dj_1_day": impact_dj_1_day_str, # 计算并格式化 impact_1_day
|
| 328 |
+
"impact_dj_2_day": impact_dj_2_day_str, # 计算并格式化 impact_2_day
|
| 329 |
+
"impact_dj_3_day": impact_dj_3_day_str,
|
| 330 |
+
"impact_ixic_1_day": impact_ixic_1_day_str, # 计算并格式化 impact_1_day
|
| 331 |
+
"impact_ixic_2_day": impact_ixic_2_day_str, # 计算并格式化 impact_2_day
|
| 332 |
+
"impact_ixic_3_day": impact_ixic_3_day_str,
|
| 333 |
+
"impact_ndx_1_day": impact_ndx_1_day_str, # 计算并格式化 impact_1_day
|
| 334 |
+
"impact_ndx_2_day": impact_ndx_2_day_str, # 计算并格式化 impact_2_day
|
| 335 |
+
"impact_ndx_3_day": impact_ndx_3_day_str,
|
| 336 |
"affected_stock_codes": affected_stock_codes_str, # 动态生成受影响的股票代码
|
| 337 |
"accuracy": float(fake_accuracy),
|
| 338 |
"impact_on_stock": stock_predictions, # 第��个预测值是股票影响
|
| 339 |
+
"impact_on_index_inx": index_inx_predictions, # 第一个预测值是股票影响
|
| 340 |
+
"impact_on_index_dj": index_dj_predictions, # 第一个预测值是股票影响
|
| 341 |
+
"impact_on_index_ixic": index_ixic_predictions, # 第一个预测值是股票影响
|
| 342 |
+
"impact_on_index_ndx": index_ndx_predictions, # 第一个预测值是股票影响
|
| 343 |
|
| 344 |
}
|
| 345 |
|
|
|
|
| 353 |
print(f"predict() result: {result}")
|
| 354 |
|
| 355 |
# 返回预测结果
|
| 356 |
+
return result
|
| 357 |
|
| 358 |
except Exception as e:
|
| 359 |
# 打印完整的错误堆栈信息
|
| 360 |
traceback_str = traceback.print_exc()
|
| 361 |
print(f"predict() error: {e}")
|
| 362 |
print(traceback_str)
|
| 363 |
+
return {"predict() error": str(e), "traceback": traceback_str}
|
| 364 |
|
| 365 |
|
| 366 |
+
def stock_fix_for_1012_model(score, predictions, last_prices):
|
| 367 |
+
"""
|
| 368 |
+
修复 1012 模型的预测结果,支持多特征处理。
|
| 369 |
+
|
| 370 |
+
:param score: 模型评分,用于调整预测结果。
|
| 371 |
+
:param predictions: 模型的原始预测结果,形状为 (days, features)。
|
| 372 |
+
:param last_prices: 每个特征的最后价格,。
|
| 373 |
+
:return: 修正后的预测结果,形状与输入一致。
|
| 374 |
+
"""
|
| 375 |
coefficient = 1.2 # 调整系数,可以根据需要微调
|
| 376 |
smoothing_factor = 0.7 # 平滑因子,控制曲线平滑度
|
| 377 |
window_size = 3 # 滚动平均窗口大小
|
| 378 |
|
| 379 |
smoothed_predictions = [] # 用于存储平滑后的预测
|
| 380 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
for i, day in enumerate(predictions):
|
| 382 |
+
adjusted_day = [] # 存储当天修正后的各特征值
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
+
for feature_idx, value in enumerate(day):
|
| 385 |
+
# 获取当前特征的最后价格
|
| 386 |
+
last_price = last_prices
|
| 387 |
+
if last_price == 0:
|
| 388 |
+
last_price = 1
|
| 389 |
+
|
| 390 |
+
# 计算波动系数,并限制其在一个较小的范围内
|
| 391 |
+
fluctuation = random.uniform(-0.01, 0.01)
|
| 392 |
+
|
| 393 |
+
# 当前预测值的修正
|
| 394 |
+
adjusted_value = ((abs(value) * score * coefficient / last_price / 10 / 100) + (1 + fluctuation)) * last_price
|
| 395 |
+
|
| 396 |
+
# 滚动平均平滑(仅对收盘价进行平滑,假设收盘价是特征索引为 0 的值)
|
| 397 |
+
if feature_idx == 0 and i >= window_size:
|
| 398 |
+
smoothed_value = (
|
| 399 |
+
sum([smoothed_predictions[j][feature_idx] for j in range(i - window_size, i)]) / window_size
|
| 400 |
+
)
|
| 401 |
+
adjusted_value = smoothing_factor * smoothed_value + (1 - smoothing_factor) * adjusted_value
|
| 402 |
+
|
| 403 |
+
# 更新最后价格,用于下一个迭代
|
| 404 |
+
last_prices = adjusted_value
|
| 405 |
+
adjusted_day.append(adjusted_value)
|
| 406 |
+
|
| 407 |
+
# 将修正后的预测存入
|
| 408 |
+
smoothed_predictions.append(adjusted_day)
|
| 409 |
+
|
| 410 |
return smoothed_predictions
|
| 411 |
|
| 412 |
|
preprocess.py
CHANGED
|
@@ -220,35 +220,54 @@ def get_sentiment_score(text):
|
|
| 220 |
|
| 221 |
|
| 222 |
|
| 223 |
-
def get_stock_info(stock_codes,
|
| 224 |
# 获取股票代码和新闻日期
|
| 225 |
-
stock_codes = stock_codes
|
| 226 |
|
| 227 |
-
news_date =
|
| 228 |
-
print(f"Getting stock info for {stock_codes} on {news_date}")
|
| 229 |
|
| 230 |
previous_stock_history = []
|
| 231 |
following_stock_history = []
|
| 232 |
-
previous_stock_index_history = []
|
| 233 |
-
following_stock_index_history = []
|
| 234 |
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
# 如果数据为空,创建一个空的 DataFrame 并填充为 0
|
| 237 |
if stock_history.empty:
|
| 238 |
-
|
| 239 |
-
'开盘': [
|
| 240 |
-
'收盘': [
|
| 241 |
-
'最高': [
|
| 242 |
-
'最低': [
|
| 243 |
-
'成交量': [
|
| 244 |
-
'成交额': [
|
| 245 |
})
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
# 确保 'date' 列存在
|
| 249 |
if 'date' not in stock_history.columns:
|
| 250 |
print(f"'date' column not found in stock history. Returning empty data.")
|
| 251 |
-
return pd.DataFrame([[
|
| 252 |
|
| 253 |
# 将日期转换为 datetime 格式,便于比较
|
| 254 |
stock_history['date'] = pd.to_datetime(stock_history['date'])
|
|
@@ -265,44 +284,61 @@ def get_stock_info(stock_codes, news_date):
|
|
| 265 |
|
| 266 |
# 确保找到的目标日期有数据
|
| 267 |
if target_row.empty:
|
| 268 |
-
return pd.DataFrame([[
|
| 269 |
|
| 270 |
target_index = target_row.index[0]
|
| 271 |
target_pos = stock_history.index.get_loc(target_index)
|
| 272 |
|
| 273 |
-
# 取出目标日期及其前
|
| 274 |
-
previous_rows = stock_history.iloc[max(0, target_pos -
|
| 275 |
|
| 276 |
-
# 取出目标日期及其后
|
| 277 |
-
following_rows = stock_history.iloc[target_pos:target_pos + 4]
|
| 278 |
|
| 279 |
# 删除日期列
|
| 280 |
previous_rows = previous_rows.drop(columns=['date'])
|
| 281 |
following_rows = following_rows.drop(columns=['date'])
|
| 282 |
|
| 283 |
-
# 如果 previous_rows 或 following_rows 的行数不足
|
| 284 |
-
if len(previous_rows) <
|
| 285 |
-
previous_rows = previous_rows.reindex(range(
|
| 286 |
|
| 287 |
-
if len(following_rows) <
|
| 288 |
-
following_rows = following_rows.reindex(range(
|
| 289 |
|
| 290 |
-
# 只返回前
|
| 291 |
-
previous_rows = previous_rows.iloc[:
|
| 292 |
-
following_rows = following_rows.iloc[:
|
| 293 |
|
| 294 |
return previous_rows, following_rows
|
| 295 |
|
| 296 |
if not stock_codes or stock_codes == ['']:
|
| 297 |
# 如果 stock_codes 为空,直接获取并返回大盘数据
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
# 个股补零逻辑
|
| 304 |
-
previous_stock_history.append([[
|
| 305 |
-
following_stock_history.append([[
|
| 306 |
|
| 307 |
|
| 308 |
|
|
@@ -310,7 +346,6 @@ def get_stock_info(stock_codes, news_date):
|
|
| 310 |
for stock_code in stock_codes:
|
| 311 |
stock_code = stock_code.strip()
|
| 312 |
stock_history = get_stock_history(stock_code, news_date)
|
| 313 |
-
stock_index_history = get_stock_index_history(stock_code, news_date)
|
| 314 |
|
| 315 |
# 处理个股数据
|
| 316 |
previous_rows, following_rows = process_history(stock_history, news_date)
|
|
@@ -318,11 +353,33 @@ def get_stock_info(stock_codes, news_date):
|
|
| 318 |
following_stock_history.append(following_rows.values.tolist())
|
| 319 |
|
| 320 |
# 处理大盘数据
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
return
|
|
|
|
|
|
|
| 326 |
|
| 327 |
|
| 328 |
|
|
|
|
| 220 |
|
| 221 |
|
| 222 |
|
| 223 |
+
def get_stock_info(stock_codes, history_days=30):
|
| 224 |
# 获取股票代码和新闻日期
|
| 225 |
+
stock_codes = stock_codes
|
| 226 |
|
| 227 |
+
news_date = datetime.now().strftime('%Y%m%d')
|
| 228 |
+
# print(f"Getting stock info for {stock_codes} on {news_date}")
|
| 229 |
|
| 230 |
previous_stock_history = []
|
| 231 |
following_stock_history = []
|
|
|
|
|
|
|
| 232 |
|
| 233 |
+
previous_stock_inx_index_history = []
|
| 234 |
+
previous_stock_dj_index_history = []
|
| 235 |
+
previous_stock_ixic_index_history = []
|
| 236 |
+
previous_stock_ndx_index_history = []
|
| 237 |
+
|
| 238 |
+
following_stock_inx_index_history = []
|
| 239 |
+
following_stock_dj_index_history = []
|
| 240 |
+
following_stock_ixic_index_history = []
|
| 241 |
+
following_stock_ndx_index_history = []
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def process_history(stock_history, target_date, history_days=history_days, following_days = 3):
|
| 246 |
# 如果数据为空,创建一个空的 DataFrame 并填充为 0
|
| 247 |
if stock_history.empty:
|
| 248 |
+
empty_data_previous = pd.DataFrame({
|
| 249 |
+
'开盘': [-1] * history_days,
|
| 250 |
+
'收盘': [-1] * history_days,
|
| 251 |
+
'最高': [-1] * history_days,
|
| 252 |
+
'最低': [-1] * history_days,
|
| 253 |
+
'成交量': [-1] * history_days,
|
| 254 |
+
'成交额': [-1] * history_days
|
| 255 |
})
|
| 256 |
+
|
| 257 |
+
empty_data_following = pd.DataFrame({
|
| 258 |
+
'开盘': [-1] * following_days,
|
| 259 |
+
'收盘': [-1] * following_days,
|
| 260 |
+
'最高': [-1] * following_days,
|
| 261 |
+
'最低': [-1] * following_days,
|
| 262 |
+
'成交量': [-1] * following_days,
|
| 263 |
+
'成交额': [-1] * following_days
|
| 264 |
+
})
|
| 265 |
+
return empty_data_previous, empty_data_following
|
| 266 |
|
| 267 |
# 确保 'date' 列存在
|
| 268 |
if 'date' not in stock_history.columns:
|
| 269 |
print(f"'date' column not found in stock history. Returning empty data.")
|
| 270 |
+
return pd.DataFrame([[-1] * 6] * history_days), pd.DataFrame([[-1] * 6] * following_days)
|
| 271 |
|
| 272 |
# 将日期转换为 datetime 格式,便于比较
|
| 273 |
stock_history['date'] = pd.to_datetime(stock_history['date'])
|
|
|
|
| 284 |
|
| 285 |
# 确保找到的目标日期有数据
|
| 286 |
if target_row.empty:
|
| 287 |
+
return pd.DataFrame([[-1] * 6] * history_days), pd.DataFrame([[-1] * 6] * following_days)
|
| 288 |
|
| 289 |
target_index = target_row.index[0]
|
| 290 |
target_pos = stock_history.index.get_loc(target_index)
|
| 291 |
|
| 292 |
+
# 取出目标日期及其前history_days条记录
|
| 293 |
+
previous_rows = stock_history.iloc[max(0, target_pos - history_days):target_pos + 1]
|
| 294 |
|
| 295 |
+
# 取出目标日期及其后3条记录
|
| 296 |
+
following_rows = stock_history.iloc[target_pos + 1:target_pos + 4]
|
| 297 |
|
| 298 |
# 删除日期列
|
| 299 |
previous_rows = previous_rows.drop(columns=['date'])
|
| 300 |
following_rows = following_rows.drop(columns=['date'])
|
| 301 |
|
| 302 |
+
# 如果 previous_rows 或 following_rows 的行数不足 history_days,则填充至 history_days 行
|
| 303 |
+
if len(previous_rows) < history_days:
|
| 304 |
+
previous_rows = previous_rows.reindex(range(history_days), fill_value=-1)
|
| 305 |
|
| 306 |
+
if len(following_rows) < 3:
|
| 307 |
+
following_rows = following_rows.reindex(range(3), fill_value=-1)
|
| 308 |
|
| 309 |
+
# 只返回前history_days行,并只返回前6列(开盘、收盘、最高、最低、成交量、成交额)
|
| 310 |
+
previous_rows = previous_rows.iloc[:history_days, :6]
|
| 311 |
+
following_rows = following_rows.iloc[:following_days, :6]
|
| 312 |
|
| 313 |
return previous_rows, following_rows
|
| 314 |
|
| 315 |
if not stock_codes or stock_codes == ['']:
|
| 316 |
# 如果 stock_codes 为空,直接获取并返回大盘数据
|
| 317 |
+
stock_index_ndx_history = get_stock_index_history("", news_date, 1)
|
| 318 |
+
stock_index_dj_history = get_stock_index_history("", news_date, 2)
|
| 319 |
+
stock_index_inx_history = get_stock_index_history("", news_date, 3)
|
| 320 |
+
stock_index_ixic_history = get_stock_index_history("", news_date, 4)
|
| 321 |
+
|
| 322 |
+
previous_ndx_rows, following_ndx_rows = process_history(stock_index_ndx_history, news_date, history_days)
|
| 323 |
+
previous_dj_rows, following_dj_rows = process_history(stock_index_dj_history, news_date, history_days)
|
| 324 |
+
previous_inx_rows, following_inx_rows = process_history(stock_index_inx_history, news_date, history_days)
|
| 325 |
+
previous_ixic_rows, following_ixic_rows = process_history(stock_index_ixic_history, news_date, history_days)
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
previous_stock_inx_index_history.append(previous_inx_rows.values.tolist())
|
| 329 |
+
previous_stock_dj_index_history.append(previous_dj_rows.values.tolist())
|
| 330 |
+
previous_stock_ixic_index_history.append(previous_ixic_rows.values.tolist())
|
| 331 |
+
previous_stock_ndx_index_history.append(previous_ndx_rows.values.tolist())
|
| 332 |
+
|
| 333 |
+
following_stock_inx_index_history.append(following_inx_rows.values.tolist())
|
| 334 |
+
following_stock_dj_index_history.append(following_dj_rows.values.tolist())
|
| 335 |
+
following_stock_ixic_index_history.append(following_ixic_rows.values.tolist())
|
| 336 |
+
following_stock_ndx_index_history.append(following_ndx_rows.values.tolist())
|
| 337 |
+
|
| 338 |
|
| 339 |
# 个股补零逻辑
|
| 340 |
+
previous_stock_history.append([[-1] * 6] * history_days)
|
| 341 |
+
following_stock_history.append([[-1] * 6] * 3)
|
| 342 |
|
| 343 |
|
| 344 |
|
|
|
|
| 346 |
for stock_code in stock_codes:
|
| 347 |
stock_code = stock_code.strip()
|
| 348 |
stock_history = get_stock_history(stock_code, news_date)
|
|
|
|
| 349 |
|
| 350 |
# 处理个股数据
|
| 351 |
previous_rows, following_rows = process_history(stock_history, news_date)
|
|
|
|
| 353 |
following_stock_history.append(following_rows.values.tolist())
|
| 354 |
|
| 355 |
# 处理大盘数据
|
| 356 |
+
stock_index_ndx_history = get_stock_index_history("", news_date, 1)
|
| 357 |
+
stock_index_dj_history = get_stock_index_history("", news_date, 2)
|
| 358 |
+
stock_index_inx_history = get_stock_index_history("", news_date, 3)
|
| 359 |
+
stock_index_ixic_history = get_stock_index_history("", news_date, 4)
|
| 360 |
+
|
| 361 |
+
previous_ndx_rows, following_ndx_rows = process_history(stock_index_ndx_history, news_date, history_days)
|
| 362 |
+
previous_dj_rows, following_dj_rows = process_history(stock_index_dj_history, news_date, history_days)
|
| 363 |
+
previous_inx_rows, following_inx_rows = process_history(stock_index_inx_history, news_date, history_days)
|
| 364 |
+
previous_ixic_rows, following_ixic_rows = process_history(stock_index_ixic_history, news_date, history_days)
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
previous_stock_inx_index_history.append(previous_inx_rows.values.tolist())
|
| 368 |
+
previous_stock_dj_index_history.append(previous_dj_rows.values.tolist())
|
| 369 |
+
previous_stock_ixic_index_history.append(previous_ixic_rows.values.tolist())
|
| 370 |
+
previous_stock_ndx_index_history.append(previous_ndx_rows.values.tolist())
|
| 371 |
+
|
| 372 |
+
following_stock_inx_index_history.append(following_inx_rows.values.tolist())
|
| 373 |
+
following_stock_dj_index_history.append(following_dj_rows.values.tolist())
|
| 374 |
+
following_stock_ixic_index_history.append(following_ixic_rows.values.tolist())
|
| 375 |
+
following_stock_ndx_index_history.append(following_ndx_rows.values.tolist())
|
| 376 |
+
|
| 377 |
+
# 只返回第一支股票的数据
|
| 378 |
+
break
|
| 379 |
|
| 380 |
+
return previous_stock_history, following_stock_history, \
|
| 381 |
+
previous_stock_inx_index_history, previous_stock_dj_index_history, previous_stock_ixic_index_history, previous_stock_ndx_index_history, \
|
| 382 |
+
following_stock_inx_index_history, following_stock_dj_index_history, following_stock_ixic_index_history, following_stock_ndx_index_history,
|
| 383 |
|
| 384 |
|
| 385 |
|
us_stock.py
CHANGED
|
@@ -19,10 +19,10 @@ logging.basicConfig(level=logging.INFO)
|
|
| 19 |
base_dir = os.path.dirname(os.path.abspath(__file__))
|
| 20 |
|
| 21 |
# 构建CSV文件的绝对路径
|
| 22 |
-
nasdaq_100_path = os.path.join(base_dir, '
|
| 23 |
-
dow_jones_path = os.path.join(base_dir, '
|
| 24 |
-
sp500_path = os.path.join(base_dir, '
|
| 25 |
-
nasdaq_composite_path = os.path.join(base_dir, '
|
| 26 |
# 从CSV文件加载成分股数据
|
| 27 |
nasdaq_100_stocks = pd.read_csv(nasdaq_100_path)
|
| 28 |
dow_jones_stocks = pd.read_csv(dow_jones_path)
|
|
@@ -69,7 +69,13 @@ async def fetch_stock_us_spot_data_with_retries_async():
|
|
| 69 |
await asyncio.sleep(wait_time)
|
| 70 |
retry_index = min(retry_index + 1, len(retry_intervals) - 1)
|
| 71 |
|
| 72 |
-
symbols =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
# 全局变量
|
|
@@ -238,58 +244,31 @@ def get_stock_history(symbol, news_date, retries=10):
|
|
| 238 |
# result = get_stock_history('ATMU', '20231218')
|
| 239 |
# print(result)
|
| 240 |
|
| 241 |
-
|
| 242 |
# 返回个股所属指数历史数据
|
| 243 |
-
def get_stock_index_history(symbol, news_date):
|
| 244 |
# 检查股票所属的指数
|
| 245 |
-
if symbol in nasdaq_100_stocks['Symbol'].values:
|
| 246 |
index_code = ".NDX"
|
| 247 |
index_data = index_us_stock_index_NDX
|
| 248 |
-
elif symbol in dow_jones_stocks['Symbol'].values:
|
| 249 |
index_code = ".DJI"
|
| 250 |
index_data = index_us_stock_index_DJI
|
| 251 |
-
elif symbol in sp500_stocks['Symbol'].values:
|
| 252 |
index_code = ".INX"
|
| 253 |
index_data = index_us_stock_index_INX
|
| 254 |
-
elif symbol in nasdaq_composite_stocks["Symbol"].values or symbol is None or symbol == "":
|
| 255 |
index_code = ".IXIC"
|
| 256 |
index_data = index_us_stock_index_IXIC
|
| 257 |
else:
|
| 258 |
-
|
| 259 |
index_code = ".IXIC"
|
| 260 |
index_data = index_us_stock_index_IXIC
|
| 261 |
-
|
| 262 |
-
# print(f"股票代码 {symbol} 不属于纳斯达克100、道琼斯工业、标准普尔500或纳斯达克综合指数。")
|
| 263 |
-
# 将 news_date 转换为 datetime 对象
|
| 264 |
-
news_date_dt = datetime.strptime(news_date, "%Y%m%d")
|
| 265 |
-
|
| 266 |
-
# 计算 start_date 和 end_date
|
| 267 |
-
start_date = (news_date_dt - timedelta(weeks=2)).strftime("%Y-%m-%d")
|
| 268 |
-
end_date = (news_date_dt + timedelta(weeks=2)).strftime("%Y-%m-%d")
|
| 269 |
-
|
| 270 |
-
# 构建一个空的 DataFrame,包含指定日期范围的空数据
|
| 271 |
-
date_range = pd.date_range(start=start_date, end=end_date)
|
| 272 |
-
stock_hist_df = pd.DataFrame({
|
| 273 |
-
'date': date_range,
|
| 274 |
-
'open': 0,
|
| 275 |
-
'high': 0,
|
| 276 |
-
'low': 0,
|
| 277 |
-
'close': 0,
|
| 278 |
-
'volume': 0,
|
| 279 |
-
'amount': 0
|
| 280 |
-
})
|
| 281 |
-
# 统一列名
|
| 282 |
-
stock_hist_df = stock_hist_df.rename(columns=column_mapping)
|
| 283 |
-
stock_hist_df = stock_hist_df.reindex(columns=standard_columns)
|
| 284 |
-
# 处理个股数据,保留所需列
|
| 285 |
-
stock_hist_df = reduce_columns(stock_hist_df, standard_columns)
|
| 286 |
-
return stock_hist_df
|
| 287 |
|
| 288 |
# 将 news_date 转换为 datetime 对象
|
| 289 |
news_date_dt = datetime.strptime(news_date, "%Y%m%d")
|
| 290 |
|
| 291 |
# 计算 start_date 和 end_date
|
| 292 |
-
start_date = (news_date_dt - timedelta(weeks=
|
| 293 |
end_date = (news_date_dt + timedelta(weeks=2)).strftime("%Y-%m-%d")
|
| 294 |
|
| 295 |
# 确保 index_data['date'] 是 datetime 类型
|
|
@@ -311,7 +290,6 @@ def get_stock_index_history(symbol, news_date):
|
|
| 311 |
'''
|
| 312 |
|
| 313 |
|
| 314 |
-
|
| 315 |
def find_stock_codes_or_names(entities):
|
| 316 |
"""
|
| 317 |
从给定的实体列表中检索股票代码或公司名称。
|
|
|
|
| 19 |
base_dir = os.path.dirname(os.path.abspath(__file__))
|
| 20 |
|
| 21 |
# 构建CSV文件的绝对路径
|
| 22 |
+
nasdaq_100_path = os.path.join(base_dir, './model/nasdaq100.csv')
|
| 23 |
+
dow_jones_path = os.path.join(base_dir, './model/dji.csv')
|
| 24 |
+
sp500_path = os.path.join(base_dir, './model/sp500.csv')
|
| 25 |
+
nasdaq_composite_path = os.path.join(base_dir, './model/nasdaq_all.csv')
|
| 26 |
# 从CSV文件加载成分股数据
|
| 27 |
nasdaq_100_stocks = pd.read_csv(nasdaq_100_path)
|
| 28 |
dow_jones_stocks = pd.read_csv(dow_jones_path)
|
|
|
|
| 69 |
await asyncio.sleep(wait_time)
|
| 70 |
retry_index = min(retry_index + 1, len(retry_intervals) - 1)
|
| 71 |
|
| 72 |
+
symbols = None
|
| 73 |
+
|
| 74 |
+
async def fetch_symbols():
|
| 75 |
+
global symbols
|
| 76 |
+
# 异步获取数据
|
| 77 |
+
symbols = await fetch_stock_us_spot_data_with_retries_async()
|
| 78 |
+
print("Symbols initialized:", symbols)
|
| 79 |
|
| 80 |
|
| 81 |
# 全局变量
|
|
|
|
| 244 |
# result = get_stock_history('ATMU', '20231218')
|
| 245 |
# print(result)
|
| 246 |
|
|
|
|
| 247 |
# 返回个股所属指数历史数据
|
| 248 |
+
def get_stock_index_history(symbol, news_date, force_index=0):
|
| 249 |
# 检查股票所属的指数
|
| 250 |
+
if symbol in nasdaq_100_stocks['Symbol'].values or force_index == 1:
|
| 251 |
index_code = ".NDX"
|
| 252 |
index_data = index_us_stock_index_NDX
|
| 253 |
+
elif symbol in dow_jones_stocks['Symbol'].values or force_index == 2:
|
| 254 |
index_code = ".DJI"
|
| 255 |
index_data = index_us_stock_index_DJI
|
| 256 |
+
elif symbol in sp500_stocks['Symbol'].values or force_index == 3:
|
| 257 |
index_code = ".INX"
|
| 258 |
index_data = index_us_stock_index_INX
|
| 259 |
+
elif symbol in nasdaq_composite_stocks["Symbol"].values or symbol is None or symbol == "" or force_index == 4:
|
| 260 |
index_code = ".IXIC"
|
| 261 |
index_data = index_us_stock_index_IXIC
|
| 262 |
else:
|
| 263 |
+
# print(f"股票代码 {symbol} 不属于纳斯达克100、道琼斯工业、标准普尔500或纳斯达克综合指数。")
|
| 264 |
index_code = ".IXIC"
|
| 265 |
index_data = index_us_stock_index_IXIC
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
# 将 news_date 转换为 datetime 对象
|
| 268 |
news_date_dt = datetime.strptime(news_date, "%Y%m%d")
|
| 269 |
|
| 270 |
# 计算 start_date 和 end_date
|
| 271 |
+
start_date = (news_date_dt - timedelta(weeks=8)).strftime("%Y-%m-%d")
|
| 272 |
end_date = (news_date_dt + timedelta(weeks=2)).strftime("%Y-%m-%d")
|
| 273 |
|
| 274 |
# 确保 index_data['date'] 是 datetime 类型
|
|
|
|
| 290 |
'''
|
| 291 |
|
| 292 |
|
|
|
|
| 293 |
def find_stock_codes_or_names(entities):
|
| 294 |
"""
|
| 295 |
从给定的实体列表中检索股票代码或公司名称。
|