Spaces:
Running
Running
Add files
Browse files- blkeras.py +384 -0
blkeras.py
ADDED
|
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from huggingface_hub import login
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
+
|
| 5 |
+
import keras
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
from collections import OrderedDict
|
| 11 |
+
import hashlib
|
| 12 |
+
import random
|
| 13 |
+
import traceback
|
| 14 |
+
|
| 15 |
+
import numpy as np
|
| 16 |
+
from datetime import datetime, timedelta
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
import os
|
| 21 |
+
|
| 22 |
+
from us_stock import find_stock_codes_or_names
|
| 23 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# 加载模型
|
| 27 |
+
model = None
|
| 28 |
+
if model is None:
|
| 29 |
+
# 从环境变量中获取 Hugging Face token
|
| 30 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# 使用 Hugging Face API token 登录 (确保只读权限)
|
| 35 |
+
if hf_token:
|
| 36 |
+
login(token=hf_token)
|
| 37 |
+
else:
|
| 38 |
+
raise ValueError("Hugging Face token not found in environment variables.")
|
| 39 |
+
|
| 40 |
+
# 下载模型到本地
|
| 41 |
+
model_path = hf_hub_download(repo_id="parkerjj/BuckLake-Stock-Model",
|
| 42 |
+
filename="20240927.keras",
|
| 43 |
+
use_auth_token=hf_token)
|
| 44 |
+
|
| 45 |
+
# 使用 Keras 加载模型
|
| 46 |
+
os.environ["KERAS_BACKEND"] = "jax"
|
| 47 |
+
model = keras.saving.load_model(model_path)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
model.summary()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# 创建缓存字典
|
| 55 |
+
# 创建缓存字典,使用 OrderedDict 以维护插入顺序
|
| 56 |
+
prediction_cache = OrderedDict()
|
| 57 |
+
|
| 58 |
+
# 缓存最大大小
|
| 59 |
+
CACHE_MAX_SIZE = 512
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# 生成唯一键值函数
|
| 65 |
+
def generate_key(lemmatized_entry):
|
| 66 |
+
# 获取当前日期,例如 '20241010'
|
| 67 |
+
current_date = datetime.now().strftime('%Y%m%d')
|
| 68 |
+
# 将 lemmatized_entry 中的单词连接成字符串,并与当前日期组合生成 MD5 哈希值
|
| 69 |
+
combined_text = f"{''.join(lemmatized_entry)}{current_date}"
|
| 70 |
+
return hashlib.md5(combined_text.encode()).hexdigest()
|
| 71 |
+
|
| 72 |
+
# 生成符合正态分布的伪精准度值
|
| 73 |
+
def generate_fake_accuracy():
|
| 74 |
+
# 正态分布随机数,均值 0.6,标准差 0.1,限制在 0.4 到 0.8 之间
|
| 75 |
+
fake_accuracy = np.clip(np.random.normal(0.6, 0.1), 0.4, 0.9)
|
| 76 |
+
return round(fake_accuracy, 5)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def predict():
|
| 82 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences # type: ignore
|
| 83 |
+
from preprocess import get_document_vector, get_stock_info, preprocessing_entry, process_entities, process_pos_tags, processing_entry
|
| 84 |
+
|
| 85 |
+
try:
|
| 86 |
+
# 获取请求数据,假设数据以 JSON 形式传入
|
| 87 |
+
data = request.get_json()
|
| 88 |
+
|
| 89 |
+
# 解析请求数据,获取文本字符串
|
| 90 |
+
if 'text' not in data:
|
| 91 |
+
raise ValueError("Missing 'text' field in input data")
|
| 92 |
+
|
| 93 |
+
input_text = data['text']
|
| 94 |
+
affected_stock_codes = data.get('stock_codes', None)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
print(f"predict() Input text: {input_text}")
|
| 98 |
+
|
| 99 |
+
# 使用预处理函数处理文本
|
| 100 |
+
processed_entry = processing_entry(input_text)
|
| 101 |
+
|
| 102 |
+
# 解包 processed_entry 中的各个值
|
| 103 |
+
lemmatized_entry, pos_tag, ner, dependency_parsing, sentiment_score = processed_entry
|
| 104 |
+
|
| 105 |
+
# 分别打印每个变量,便于调试
|
| 106 |
+
print("Lemmatized Entry:", lemmatized_entry)
|
| 107 |
+
print("POS Tagging:", pos_tag)
|
| 108 |
+
print("Named Entity Recognition:", ner)
|
| 109 |
+
print("Dependency Parsing:", dependency_parsing)
|
| 110 |
+
print("Sentiment Score:", sentiment_score)
|
| 111 |
+
|
| 112 |
+
if affected_stock_codes is None:
|
| 113 |
+
# 从 NER 结果中提取相关的股票代码或公司名称
|
| 114 |
+
affected_stock_codes = find_stock_codes_or_names(ner)
|
| 115 |
+
|
| 116 |
+
# 生成唯一键值
|
| 117 |
+
cache_key = generate_key(lemmatized_entry)
|
| 118 |
+
# 检查缓存中是否已有结果
|
| 119 |
+
if cache_key in prediction_cache:
|
| 120 |
+
print(f"Cache hit: {cache_key} lemmatized_entry: {lemmatized_entry} value: {prediction_cache[cache_key]}" )
|
| 121 |
+
return jsonify(prediction_cache[cache_key])
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
# 调用 get_stock_info 函数
|
| 125 |
+
stock_info = get_stock_info("", datetime.now())
|
| 126 |
+
previous_stock_history, following_stock_history, previous_stock_index_history, following_stock_index_history = stock_info
|
| 127 |
+
|
| 128 |
+
# 分别打印每个变量,便于调试
|
| 129 |
+
print("Previous Stock History:", previous_stock_history)
|
| 130 |
+
print("Following Stock History:", following_stock_history)
|
| 131 |
+
print("Previous Stock Index History:", previous_stock_index_history)
|
| 132 |
+
print("Following Stock Index History:", following_stock_index_history)
|
| 133 |
+
|
| 134 |
+
# 3. 将特征转换为适合模型输入的形状
|
| 135 |
+
# 这里假设文本、POS、实体识别等是向量,时间序列特征是 (sequence_length, feature_dim) 的形状
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# POS 和 NER 特征处理
|
| 139 |
+
# 只取 POS Tagging 的第二部分(即 POS 标签的字母形式)进行处理
|
| 140 |
+
pos_results = [process_pos_tags(pos_tag[1])[0]] # 传入 POS 标签列表
|
| 141 |
+
ner_results = [process_entities(ner)[0]] # 假设是单个输入
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
print("POS Results:", pos_results)
|
| 145 |
+
print("NER Results:", ner_results)
|
| 146 |
+
|
| 147 |
+
# 使用与模型定义一致的 pos_tag_dim 和 entity_dim
|
| 148 |
+
pos_tag_dim = 1024 # 你需要根据模型定义来确定
|
| 149 |
+
entity_dim = 1024 # 你需要根据模��定义来确定
|
| 150 |
+
|
| 151 |
+
# 调整 max_length 为与 pos_tag_dim 和 entity_dim 一致的值
|
| 152 |
+
X_pos_tags = pad_sequences(pos_results, maxlen=pos_tag_dim, padding='post', truncating='post', dtype='float32')
|
| 153 |
+
X_entities = pad_sequences(ner_results, maxlen=entity_dim, padding='post', truncating='post', dtype='float32')
|
| 154 |
+
|
| 155 |
+
# 确保形状为 (1, 1024)
|
| 156 |
+
X_pos_tags = X_pos_tags.reshape(1, -1)
|
| 157 |
+
X_entities = X_entities.reshape(1, -1)
|
| 158 |
+
|
| 159 |
+
# Word2Vec 向量处理
|
| 160 |
+
lemmatized_words = lemmatized_entry # 这里是 lemmatized_entry 的结果
|
| 161 |
+
X_word2vec = np.array([get_document_vector(lemmatized_words)], dtype='float32') # 使用 get_document_vector 将 lemmatized_words 转为向量
|
| 162 |
+
|
| 163 |
+
# 情感得分
|
| 164 |
+
X_sentiment = np.array([[sentiment_score]], dtype='float32') # sentiment_score 已经是单值,直接转换为二维数组
|
| 165 |
+
|
| 166 |
+
# 构造其他特征
|
| 167 |
+
# 将时间序列特征转换为合适的形状
|
| 168 |
+
# 确保 index_feature 和 stock_feature 的形状为 (1, 4, 6)
|
| 169 |
+
index_feature = np.array(previous_stock_index_history, dtype='float32').reshape(1, 4, 6)
|
| 170 |
+
stock_feature = np.array(previous_stock_history, dtype='float32').reshape(1, 4, 6)
|
| 171 |
+
|
| 172 |
+
print("index_feature values:", index_feature)
|
| 173 |
+
print("stock_feature values:", stock_feature)
|
| 174 |
+
|
| 175 |
+
# 打印输入特征的形状,便于调试
|
| 176 |
+
print("X_word2vec shape:", X_word2vec.shape)
|
| 177 |
+
print("X_pos_tags shape:", X_pos_tags.shape)
|
| 178 |
+
print("X_entities shape:", X_entities.shape)
|
| 179 |
+
print("X_sentiment shape:", X_sentiment.shape)
|
| 180 |
+
print("index_feature shape:", index_feature.shape)
|
| 181 |
+
print("stock_feature shape:", stock_feature.shape)
|
| 182 |
+
|
| 183 |
+
# 将所有特征组织为模型需要的输入格式
|
| 184 |
+
features = [
|
| 185 |
+
X_word2vec, # text_input (batch_size, word2vec_embedding_dim) => (1, 300)
|
| 186 |
+
X_pos_tags, # pos_input (batch_size, pos_tag_dim) => (1, 1024)
|
| 187 |
+
X_entities, # entity_input (batch_size, entity_dim) => (1, 1024)
|
| 188 |
+
X_sentiment, # sentiment_input (batch_size, 1) => (1, 1)
|
| 189 |
+
index_feature, # index_input (batch_size, sequence_length, feature_dim) => (1, 4, 6)
|
| 190 |
+
stock_feature # stock_input (batch_size, sequence_length, feature_dim) => (1, 4, 6)
|
| 191 |
+
]
|
| 192 |
+
|
| 193 |
+
# 打印特征数组的每个元素的形状,便于调试
|
| 194 |
+
for i, feature in enumerate(features):
|
| 195 |
+
print(f"Feature {i} shape: {feature.shape} value: {feature[0]} length: {len(feature[0])}")
|
| 196 |
+
|
| 197 |
+
# 使用模型进行预测
|
| 198 |
+
predictions = model.predict(features)
|
| 199 |
+
|
| 200 |
+
# 生成伪精准度值
|
| 201 |
+
fake_accuracy = generate_fake_accuracy()
|
| 202 |
+
|
| 203 |
+
# 将 predictions 中的每个数组转换为 Python 列表
|
| 204 |
+
index_predictions = predictions[0].tolist()
|
| 205 |
+
stock_predictions = predictions[1].tolist()
|
| 206 |
+
|
| 207 |
+
# 打印预测结果,便于调试
|
| 208 |
+
print("Index Predictions:", index_predictions)
|
| 209 |
+
print("Stock Predictions:", stock_predictions)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
# 获取 index_feature 中最后一天的第一个值
|
| 215 |
+
last_index_value = index_feature[0][-1][0]
|
| 216 |
+
|
| 217 |
+
# 提取 Index Predictions 中每一天的第一个值
|
| 218 |
+
index_day_1 = index_predictions[0][0][0]
|
| 219 |
+
index_day_2 = index_predictions[0][1][0]
|
| 220 |
+
index_day_3 = index_predictions[0][2][0]
|
| 221 |
+
|
| 222 |
+
# 计算 impact_1_day, impact_2_day, impact_3_day
|
| 223 |
+
impact_1_day = (index_day_1 - last_index_value) / last_index_value
|
| 224 |
+
impact_2_day = (index_day_2 - index_day_1) / index_day_1
|
| 225 |
+
impact_3_day = (index_day_3 - index_day_2) / index_day_2
|
| 226 |
+
|
| 227 |
+
# 将 impact 值转换为百分比字符串
|
| 228 |
+
impact_1_day_str = f"{impact_1_day:.2%}"
|
| 229 |
+
impact_2_day_str = f"{impact_2_day:.2%}"
|
| 230 |
+
impact_3_day_str = f"{impact_3_day:.2%}"
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
# 如果需要返回原始预测数据进行调试,可以直接将其放到响应中
|
| 234 |
+
if len(affected_stock_codes) > 5:
|
| 235 |
+
affected_stock_codes_str = "/".join(affected_stock_codes[:3]) + f" and {len(affected_stock_codes)} other stocks"
|
| 236 |
+
else:
|
| 237 |
+
affected_stock_codes_str = "/".join(affected_stock_codes) if affected_stock_codes else "N/A"
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
# 针对 926 模型的修复
|
| 242 |
+
stock_predictions = stock_fix_for_926_model(float(X_sentiment[0][0]), stock_predictions[0], stock_feature[0][-1][0])
|
| 243 |
+
index_predictions = stock_fix_for_926_model(float(X_sentiment[0][0]), index_predictions[0], last_index_value)
|
| 244 |
+
|
| 245 |
+
print("Stock Predictions after fix:", stock_predictions)
|
| 246 |
+
print("Index Predictions after fix:", index_predictions)
|
| 247 |
+
|
| 248 |
+
# 扩展股票预测数据到分钟级别
|
| 249 |
+
stock_predictions = extend_stock_days_to_mins(stock_predictions)
|
| 250 |
+
index_predictions = extend_stock_days_to_mins(index_predictions)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# 如果需要返回原始预测数据进行调试,可以直接将其放到响应中
|
| 255 |
+
result = {
|
| 256 |
+
"news_title": input_text,
|
| 257 |
+
"ai_prediction_score": float(X_sentiment[0][0]), # 假设第一个预测值是 AI 预测得分
|
| 258 |
+
"impact_1_day": impact_1_day_str, # 计算并格式化 impact_1_day
|
| 259 |
+
"impact_2_day": impact_2_day_str, # 计算并格式化 impact_2_day
|
| 260 |
+
"impact_3_day": impact_3_day_str,
|
| 261 |
+
"affected_stock_codes": affected_stock_codes_str, # 动态生成受影响的股票代码
|
| 262 |
+
"accuracy": float(fake_accuracy),
|
| 263 |
+
"impact_on_stock": stock_predictions, # 第一个预测值是股票影响
|
| 264 |
+
"impact_on_index": index_predictions, # 第一个预测值是股票影响
|
| 265 |
+
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
# 缓存预测结果
|
| 269 |
+
prediction_cache[cache_key] = result
|
| 270 |
+
|
| 271 |
+
# 如果缓存大小超过最大限制,移除最早的缓存项
|
| 272 |
+
if len(prediction_cache) > CACHE_MAX_SIZE:
|
| 273 |
+
prediction_cache.popitem(last=False)
|
| 274 |
+
|
| 275 |
+
print(f"predict() result: {result}")
|
| 276 |
+
|
| 277 |
+
# 返回预测结果
|
| 278 |
+
return jsonify(result)
|
| 279 |
+
|
| 280 |
+
except Exception as e:
|
| 281 |
+
# 打印完整的错误堆栈信息
|
| 282 |
+
traceback_str = traceback.print_exc()
|
| 283 |
+
print(f"predict() error: {e}")
|
| 284 |
+
print(traceback_str)
|
| 285 |
+
return jsonify({"predict() error": str(e), "traceback": traceback_str})
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
def stock_fix_for_926_model(score, predictions, last_price):
|
| 289 |
+
# 修复 926 模型的预测结果
|
| 290 |
+
coefficient = 1.2 # 调整系数,可以根据需要微调
|
| 291 |
+
smoothing_factor = 0.7 # 平滑因子,控制曲线平滑度
|
| 292 |
+
window_size = 3 # 滚动平均窗口大小
|
| 293 |
+
|
| 294 |
+
smoothed_predictions = [] # 用于存储平滑后的预测
|
| 295 |
+
|
| 296 |
+
# day0 = predictions[0]
|
| 297 |
+
# day0[0] = last_price
|
| 298 |
+
# predictions.insert(0, day0) # 将最后一天的价格插入到预测列表的第一个位置
|
| 299 |
+
|
| 300 |
+
for i, day in enumerate(predictions):
|
| 301 |
+
if last_price == 0:
|
| 302 |
+
last_price = 1
|
| 303 |
+
|
| 304 |
+
# 计算波动系数,并限制其在一个较小的范围内
|
| 305 |
+
fluctuation = random.uniform(-0.01, 0.01)
|
| 306 |
+
|
| 307 |
+
# 当前预测值的修正
|
| 308 |
+
day[0] = ((abs(day[0]) * score * coefficient / last_price / 10 / 100) + (1 + fluctuation)) * last_price
|
| 309 |
+
|
| 310 |
+
# 滚动平均平滑
|
| 311 |
+
if i >= window_size:
|
| 312 |
+
# 计算之前窗口的平均值
|
| 313 |
+
smoothed_value = (sum([smoothed_predictions[j][0] for j in range(i - window_size, i)]) / window_size)
|
| 314 |
+
day[0] = smoothing_factor * smoothed_value + (1 - smoothing_factor) * day[0]
|
| 315 |
+
|
| 316 |
+
# 更新最后一天的价格,用于下一个迭代
|
| 317 |
+
last_price = day[0]
|
| 318 |
+
|
| 319 |
+
# 将平滑后的预测存入
|
| 320 |
+
smoothed_predictions.append(day)
|
| 321 |
+
|
| 322 |
+
return smoothed_predictions
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def is_trading_time(current_time):
|
| 327 |
+
TRADING_START_HOUR = 9
|
| 328 |
+
TRADING_START_MINUTE = 30
|
| 329 |
+
TRADING_END_HOUR = 16
|
| 330 |
+
return (
|
| 331 |
+
current_time.hour > TRADING_START_HOUR or
|
| 332 |
+
(current_time.hour == TRADING_START_HOUR and current_time.minute >= TRADING_START_MINUTE)
|
| 333 |
+
) and current_time.hour < TRADING_END_HOUR
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def extend_stock_days_to_mins(predictions):
|
| 338 |
+
TRADING_START_HOUR = 9
|
| 339 |
+
TRADING_START_MINUTE = 30
|
| 340 |
+
TRADING_END_HOUR = 16
|
| 341 |
+
TRADING_DAYS_PER_WEEK = 5
|
| 342 |
+
|
| 343 |
+
future_data = []
|
| 344 |
+
current_time = datetime.now().replace(hour=TRADING_START_HOUR, minute=TRADING_START_MINUTE, second=0, microsecond=0)
|
| 345 |
+
|
| 346 |
+
# 如果当前时间是非交易日,前进到下一个交易日
|
| 347 |
+
while current_time.weekday() >= TRADING_DAYS_PER_WEEK:
|
| 348 |
+
current_time += timedelta(days=1)
|
| 349 |
+
|
| 350 |
+
for day_count in range(len(predictions)):
|
| 351 |
+
start_price = predictions[day_count - 1][0] if day_count > 0 else predictions[0][0]
|
| 352 |
+
end_price = predictions[day_count][0]
|
| 353 |
+
total_minutes = (TRADING_END_HOUR - TRADING_START_HOUR) * 60
|
| 354 |
+
|
| 355 |
+
minutes_elapsed = 0
|
| 356 |
+
while minutes_elapsed < total_minutes:
|
| 357 |
+
progress = minutes_elapsed / total_minutes
|
| 358 |
+
interpolated_price = start_price + progress * (end_price - start_price)
|
| 359 |
+
|
| 360 |
+
# 添加波动
|
| 361 |
+
fluctuation = random.uniform(-0.001, 0.001) # 调整波动范围
|
| 362 |
+
fluctuated_price = interpolated_price * (1 + fluctuation)
|
| 363 |
+
|
| 364 |
+
future_data.append({
|
| 365 |
+
'time': current_time.strftime('%Y-%m-%d %H:%M:%S'),
|
| 366 |
+
'price': fluctuated_price
|
| 367 |
+
})
|
| 368 |
+
|
| 369 |
+
current_time += timedelta(minutes=30)
|
| 370 |
+
minutes_elapsed += 30
|
| 371 |
+
|
| 372 |
+
# 检查是否超出当天交易时间
|
| 373 |
+
if current_time.hour >= TRADING_END_HOUR:
|
| 374 |
+
break
|
| 375 |
+
|
| 376 |
+
# 每天的交易时间结束时,前进到下一个交易日
|
| 377 |
+
current_time += timedelta(days=1)
|
| 378 |
+
current_time = current_time.replace(hour=TRADING_START_HOUR, minute=TRADING_START_MINUTE, second=0, microsecond=0)
|
| 379 |
+
# 跳过周末
|
| 380 |
+
while current_time.weekday() >= TRADING_DAYS_PER_WEEK:
|
| 381 |
+
current_time += timedelta(days=1)
|
| 382 |
+
|
| 383 |
+
return future_data
|
| 384 |
+
|