|
import os |
|
import base64 |
|
import gradio as gr |
|
from gradio_client import Client, file |
|
import time |
|
import json |
|
import threading |
|
|
|
MODEL_NAME = "Qwen" |
|
client_chat = os.environ.get("CHAT_URL") |
|
client_vl = os.environ.get("VL_URL") |
|
def read(filename): |
|
with open(filename) as f: |
|
data = f.read() |
|
return data |
|
|
|
SYS_PROMPT = read('system_prompt.txt') |
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">家庭医生demo</h1> |
|
<p>🩺一个帮助您分析症状和检验报告的家庭医生(AI诊疗助手)。</p> |
|
<p>🔎 选择您需要咨询的科室医生,在输入框中输入症状描述或者体检信息等;您也可以在图片框中上传检测报告图。</p> |
|
<p>🦕 请注意生成信息可能不准确,且不具备任何实际参考价值,如有需要请联系专业医生。</p> |
|
<p>💾 因网络延迟问题,图片识别未及时出现分析内容,请间隔多次点击重载,手动尝试获取。</p> |
|
</div> |
|
''' |
|
|
|
|
|
css = """ |
|
h1 { |
|
text-align: center; |
|
display: block; |
|
} |
|
footer { |
|
display:none !important |
|
} |
|
""" |
|
|
|
|
|
LICENSE = '当前采用 ' + MODEL_NAME + ' 模型,请主动移除个人信息,注意隐私保护🔔' |
|
|
|
|
|
local_data = threading.local() |
|
|
|
def init_data(): |
|
if not hasattr(local_data, 'results'): |
|
local_data.results = "" |
|
|
|
|
|
def process_text(text_input, unit): |
|
init_data() |
|
client = Client(client_chat) |
|
|
|
job = client.submit( |
|
query=str(text_input), |
|
history=None, |
|
system=f"You are a experienced {unit} doctor AI assistant." + SYS_PROMPT, |
|
api_name="/model_chat" |
|
) |
|
response = job.result() |
|
local_data.results = response[1][0][1] |
|
return local_data.results |
|
|
|
''' |
|
def update(json_path: str, event: threading.Event): |
|
init_data() |
|
event.wait() |
|
client = Client(client_vl) |
|
response = client.predict( |
|
json_path, |
|
fn_index=1 |
|
) |
|
with open(response, 'r') as f: |
|
data = json.load(f) |
|
local_data.results = data[-1][1] |
|
print(local_data.results) |
|
''' |
|
|
|
|
|
|
|
def process_image(image_input, unit): |
|
init_data() |
|
if image_input is not None: |
|
image = str(image_input) |
|
print(image) |
|
|
|
|
|
client = Client(client_vl) |
|
|
|
prompt = f" You are a experienced {unit} doctor AI assistant." + SYS_PROMPT + "Help me understand what is in this picture and analysis." |
|
|
|
res5 = client.predict( |
|
"", |
|
image, |
|
fn_index=5 |
|
) |
|
print(res5) |
|
|
|
res0 = client.predict( |
|
res5, |
|
prompt, |
|
fn_index=0 |
|
) |
|
|
|
print(res0) |
|
''' |
|
event = threading.Event() |
|
t = threading.Thread(target=update, args=(res0, event)) |
|
t.start() |
|
local_data.results = "正在分析....." |
|
event.set() |
|
''' |
|
job = client.submit( |
|
res0, |
|
fn_index=1 |
|
) |
|
response = job.result() |
|
with open(response, 'r') as f: |
|
data = json.load(f) |
|
local_data.results = data[-1][1] |
|
return local_data.results |
|
|
|
def fetch_result(): |
|
init_data() |
|
return local_data.results |
|
|
|
def reset_result(): |
|
init_data() |
|
print(local_data.results) |
|
local_data.results = "" |
|
|
|
def main(text_input="", image_input=None, unit=""): |
|
reset_result() |
|
if text_input and image_input is None: |
|
return process_text(text_input, unit) |
|
elif image_input is not None: |
|
return process_image(image_input, unit) |
|
|
|
|
|
|
|
with gr.Blocks(css=css, title="家庭医生AI助手", theme="soft") as iface: |
|
with gr.Accordion(""): |
|
gr.Markdown(DESCRIPTION) |
|
unit = gr.Dropdown(label="🩺科室", value='中医科', elem_id="units", |
|
choices=["中医科", "内科", "外科", "妇产科", "儿科", \ |
|
"五官科", "男科", "皮肤性病科", "传染科", "精神心理科", \ |
|
"整形美容科", "营养科", "生殖中心", "麻醉医学科", "医学影像科", \ |
|
"骨科", "肿瘤科", "急诊科", "检验科"]) |
|
|
|
with gr.Row(): |
|
output_box = gr.Textbox(label="分析") |
|
with gr.Row(): |
|
image_input = gr.Image(type="filepath", label="上传图片") |
|
text_input = gr.Textbox(label="输入") |
|
with gr.Row(): |
|
submit_btn = gr.Button("🚀 发送") |
|
fresh_btn = gr.Button("✨ 重载") |
|
clear_btn = gr.ClearButton([output_box, image_input, text_input], value="🗑️ 清空") |
|
|
|
|
|
|
|
submit_btn.click(main, inputs=[text_input, image_input, unit], outputs=output_box) |
|
fresh_btn.click(fn=fetch_result, outputs=output_box) |
|
|
|
|
|
gr.Markdown(LICENSE) |
|
|
|
|
|
|
|
|
|
|
|
|
|
iface.queue().launch(show_api=False) |