File size: 5,184 Bytes
1413b56 74f2fec 6528cf4 fc7835b 840baf8 1413b56 d863a49 1413b56 4d0cb51 1413b56 4d0cb51 0135d36 1413b56 adeff88 5a54d70 adeff88 d62a0b0 2ef7963 d62a0b0 1413b56 adeff88 fe82302 511f858 cf5ad9a c81e1a9 83787a7 1413b56 8300a2c 0135d36 e7b1c23 bcb5015 ca12f97 2ac0a75 0135d36 2ac0a75 ec59b0c e861ae5 0135d36 5a54d70 ca12f97 d62a0b0 1413b56 5a54d70 adeff88 1413b56 20f7f32 c81e1a9 cf5ad9a 511f858 1413b56 f2b6def 1402965 fde171a 1402965 f2b6def d706c35 1402965 b5e043e 3dc387b 1413b56 d706c35 ca12f97 2ac0a75 017c9f5 511f858 2ac0a75 ca12f97 2ac0a75 bcb5015 ca88d43 adeff88 5a3d949 123c5d1 87291e9 adeff88 37c0d2f 511f858 c1af167 1413b56 b310837 1413b56 e7b1c23 1413b56 e7b1c23 0135d36 7a5b1df 1413b56 3905b40 1413b56 2ef7963 1413b56 6a59997 1413b56 b310837 8a3a9e0 ca88d43 3905b40 1413b56 b0b45b9 4d0cb51 3905b40 60d73cd 3905b40 0775bbf 123c5d1 1413b56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import base64
import gradio as gr
from gradio_client import Client, file
import time
import json
import threading
MODEL_NAME = "Qwen"
client_chat = os.environ.get("CHAT_URL")
client_vl = os.environ.get("VL_URL")
def read(filename):
with open(filename) as f:
data = f.read()
return data
SYS_PROMPT = read('system_prompt.txt')
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">家庭医生demo</h1>
<p>🩺一个帮助您分析症状和检验报告的家庭医生(AI诊疗助手)。</p>
<p>🔎 选择您需要咨询的科室医生,在输入框中输入症状描述或者体检信息等;您也可以在图片框中上传检测报告图。</p>
<p>🦕 请注意生成信息可能不准确,且不具备任何实际参考价值,如有需要请联系专业医生。</p>
<p>💾 因网络延迟问题,图片识别未及时出现分析内容,请间隔多次点击重载,手动尝试获取。</p>
</div>
'''
css = """
h1 {
text-align: center;
display: block;
}
footer {
display:none !important
}
"""
LICENSE = '当前采用 ' + MODEL_NAME + ' 模型,请主动移除个人信息,注意隐私保护🔔'
local_data = threading.local()
def init_data():
if not hasattr(local_data, 'results'):
local_data.results = ""
def process_text(text_input, unit):
init_data()
client = Client(client_chat)
# print(client.view_api())
job = client.submit(
query=str(text_input),
history=None,
system=f"You are a experienced {unit} doctor AI assistant." + SYS_PROMPT,
api_name="/model_chat"
)
response = job.result()
local_data.results = response[1][0][1]
return local_data.results
'''
def update(json_path: str, event: threading.Event):
init_data()
event.wait()
client = Client(client_vl)
response = client.predict(
json_path,
fn_index=1
)
with open(response, 'r') as f:
data = json.load(f)
local_data.results = data[-1][1]
print(local_data.results)
'''
def process_image(image_input, unit):
init_data()
if image_input is not None:
image = str(image_input)
print(image)
#with open(image_input, "rb") as f:
# base64_image = base64.b64encode(f.read()).decode("utf-8")
client = Client(client_vl)
# print(client.view_api())
prompt = f" You are a experienced {unit} doctor AI assistant." + SYS_PROMPT + "Help me understand what is in this picture and analysis."
res5 = client.predict(
"",
image,
fn_index=5
)
print(res5)
res0 = client.predict(
res5,
prompt,
fn_index=0
)
print(res0)
'''
event = threading.Event()
t = threading.Thread(target=update, args=(res0, event))
t.start()
local_data.results = "正在分析....."
event.set()
'''
job = client.submit(
res0,
fn_index=1
)
response = job.result()
with open(response, 'r') as f:
data = json.load(f)
local_data.results = data[-1][1]
return local_data.results
def fetch_result():
init_data()
return local_data.results
def reset_result():
init_data()
print(local_data.results)
local_data.results = ""
def main(text_input="", image_input=None, unit=""):
reset_result()
if text_input and image_input is None:
return process_text(text_input, unit)
elif image_input is not None:
return process_image(image_input, unit)
with gr.Blocks(css=css, title="家庭医生AI助手", theme="soft") as iface:
with gr.Accordion(""):
gr.Markdown(DESCRIPTION)
unit = gr.Dropdown(label="🩺科室", value='中医科', elem_id="units",
choices=["中医科", "内科", "外科", "妇产科", "儿科", \
"五官科", "男科", "皮肤性病科", "传染科", "精神心理科", \
"整形美容科", "营养科", "生殖中心", "麻醉医学科", "医学影像科", \
"骨科", "肿瘤科", "急诊科", "检验科"])
with gr.Row():
output_box = gr.Textbox(label="分析")
with gr.Row():
image_input = gr.Image(type="filepath", label="上传图片") # Create an image upload button
text_input = gr.Textbox(label="输入") # Create a text input box
with gr.Row():
submit_btn = gr.Button("🚀 发送") # Create a submit button
fresh_btn = gr.Button("✨ 重载")
clear_btn = gr.ClearButton([output_box, image_input, text_input], value="🗑️ 清空") # Create a clear button
# Set up the event listeners
submit_btn.click(main, inputs=[text_input, image_input, unit], outputs=output_box)
fresh_btn.click(fn=fetch_result, outputs=output_box)
gr.Markdown(LICENSE)
#gr.close_all()
iface.queue().launch(show_api=False) # Launch the Gradio interface |