Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
import gradio as gr
|
4 |
+
from gradio_client import Client
|
5 |
+
|
6 |
+
MODEL_NAME = "QWEN"
|
7 |
+
client_chat = os.environ.get("CHAT_URL")
|
8 |
+
client_vl = os.environ.get("VL_URL")
|
9 |
+
|
10 |
+
def read(filename):
|
11 |
+
with open(filename) as f:
|
12 |
+
data = f.read()
|
13 |
+
return data
|
14 |
+
|
15 |
+
SYS_PROMPT = read('system_prompt.txt')
|
16 |
+
|
17 |
+
|
18 |
+
DESCRIPTION = '''
|
19 |
+
<div>
|
20 |
+
<h1 style="text-align: center;">家庭医生demo</h1>
|
21 |
+
<p>🩺一个帮助您分析症状和检验报告的家庭医生(AI诊疗助手)。</p>
|
22 |
+
<p>🔎 选择您需要咨询的科室医生,在输入框中输入症状描述或者体检信息等;您也可以在图片框中上传检测报告图。</p>
|
23 |
+
<p>🦕 请注意生成信息可能不准确,且不具备任何实际参考价值,如有需要请联系专业医生。</p>
|
24 |
+
</div>
|
25 |
+
'''
|
26 |
+
|
27 |
+
|
28 |
+
css = """
|
29 |
+
h1 {
|
30 |
+
text-align: center;
|
31 |
+
display: block;
|
32 |
+
}
|
33 |
+
footer {
|
34 |
+
display:none !important
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
LICENSE = '采用 ' + MODEL_NAME + ' 模型'
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def process_text(text_input, unit):
|
45 |
+
client = Client(chat_url)
|
46 |
+
response = client.predict(
|
47 |
+
query=text_input,
|
48 |
+
history=[],
|
49 |
+
system = f" You are a experienced {unit} doctor AI assistant." + SYS_PROMPT,
|
50 |
+
api_name="/model_chat"
|
51 |
+
)
|
52 |
+
return response
|
53 |
+
|
54 |
+
|
55 |
+
def encode_image_to_base64(image_input):
|
56 |
+
buffered = io.BytesIO()
|
57 |
+
image_input.save(buffered, format="JPEG")
|
58 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
59 |
+
return img_str
|
60 |
+
|
61 |
+
def process_image(image_input, unit):
|
62 |
+
if image_input is not None:
|
63 |
+
print(image_input)
|
64 |
+
#with open(image_input.name, "rb") as f:
|
65 |
+
# base64_image = base64.b64encode(f.read()).decode("utf-8")
|
66 |
+
client = Client(client_vl)
|
67 |
+
# base64_image = encode_image_to_base64(image_input)
|
68 |
+
prompt = f" You are a experienced {unit} doctor AI assistant." + SYS_PROMPT + "Help me understand what is in this picture and analysis."
|
69 |
+
response = client.predict(
|
70 |
+
prompt,
|
71 |
+
image_input,
|
72 |
+
fn_index=5
|
73 |
+
)
|
74 |
+
return response
|
75 |
+
|
76 |
+
|
77 |
+
def main(text_input="", image_input=None, unit=""):
|
78 |
+
if text_input and image_input is None:
|
79 |
+
return process_text(text_input,unit)
|
80 |
+
elif image_input is not None:
|
81 |
+
return process_image(image_input,unit)
|
82 |
+
|
83 |
+
with gr.Blocks(theme='shivi/calm_seafoam', css=css, title="家庭医生AI助手") as iface:
|
84 |
+
with gr.Accordion(""):
|
85 |
+
gr.Markdown(DESCRIPTION)
|
86 |
+
unit = gr.Dropdown(label="🩺科室", value='中医科', elem_id="units",
|
87 |
+
choices=["中医科", "内科", "外科", "妇产科", "儿科", \
|
88 |
+
"五官科", "男科", "皮肤性病科", "传染科", "精神心理科", \
|
89 |
+
"整形美容科", "营养科", "生殖中心", "麻醉医学科", "医学影像科", \
|
90 |
+
"骨科", "肿瘤科", "急诊科", "检验科"])
|
91 |
+
with gr.Row():
|
92 |
+
output_box = gr.Markdown(label="分析") # Create an output textbox
|
93 |
+
with gr.Row():
|
94 |
+
image_input = gr.Image(type="pil", label="上传图片") # Create an image upload button
|
95 |
+
text_input = gr.Textbox(label="输入") # Create a text input box
|
96 |
+
with gr.Row():
|
97 |
+
submit_btn = gr.Button("🚀 确认") # Create a submit button
|
98 |
+
clear_btn = gr.ClearButton([output_box,image_input,text_input], value="🗑️ 清空") # Create a clear button
|
99 |
+
|
100 |
+
# Set up the event listeners
|
101 |
+
submit_btn.click(main, inputs=[text_input, image_input, unit], outputs=output_box)
|
102 |
+
|
103 |
+
gr.Markdown(LICENSE)
|
104 |
+
|
105 |
+
#gr.close_all()
|
106 |
+
|
107 |
+
iface.queue().launch(show_api=False) # Launch the Gradio interface
|