File size: 4,528 Bytes
1413b56 74f2fec 6528cf4 fc7835b 840baf8 1413b56 8a3a9e0 7b2162d 1413b56 d2f3b0f fe82302 ecdf02d cf5ad9a c81e1a9 83787a7 1413b56 8300a2c cf5ad9a c7375e2 840baf8 1413b56 d5c34d8 840baf8 1413b56 20f7f32 c81e1a9 cf5ad9a ecdf02d 1413b56 f2b6def 1402965 fde171a 1402965 f2b6def d706c35 1402965 b5e043e 3dc387b 1413b56 d706c35 7b2162d 840baf8 88d69c2 840baf8 428e9f5 840baf8 88d69c2 7b2162d 60d73cd b0b45b9 123c5d1 87291e9 c1af167 1413b56 8e2ecdb 1413b56 8e2ecdb 1413b56 7a5b1df 1413b56 60d73cd 1413b56 6a59997 1413b56 8a3a9e0 87291e9 428e9f5 79d6899 1413b56 b0b45b9 60d73cd 0775bbf 123c5d1 1413b56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import base64
import gradio as gr
from gradio_client import Client, file
import time
import json
import threading
MODEL_NAME = "QWEN"
client_chat = os.environ.get("CHAT_URL")
client_vl = os.environ.get("VL_URL")
def read(filename):
with open(filename) as f:
data = f.read()
return data
SYS_PROMPT = read('system_prompt.txt')
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">家庭医生demo</h1>
<p>🩺一个帮助您分析症状和检验报告的家庭医生(AI诊疗助手)。</p>
<p>🔎 选择您需要咨询的科室医生,在输入框中输入症状描述或者体检信息等;您也可以在图片框中上传检测报告图。</p>
<p>🦕 请注意生成信息可能不准确,且不具备任何实际参考价值,如有需要请联系专业医生。</p>
</div>
'''
css = """
h1 {
text-align: center;
display: block;
}
footer {
display:none !important
}
"""
LICENSE = '采用 ' + MODEL_NAME + ' 模型'
result = ""
json_path = ""
def process_text(text_input, unit):
global result
client = Client(client_chat)
print(client.view_api())
job = client.submit(
query=str(text_input),
history=None,
system=f"You are a experienced {unit} doctor AI assistant." + SYS_PROMPT,
api_name="/model_chat"
)
response = job.result()
print(response)
result = response[1][0][1]
return result
def process_image(image_input, unit):
global result, json_path
if image_input is not None:
image = str(image_input)
print(image)
#with open(image_input, "rb") as f:
# base64_image = base64.b64encode(f.read()).decode("utf-8")
client = Client(client_vl)
print(client.view_api())
prompt = f" You are a experienced {unit} doctor AI assistant." + SYS_PROMPT + "Help me understand what is in this picture and analysis."
res5 = client.predict(
"",
image,
fn_index=5
)
print(res5)
res0 = client.predict(
res5,
prompt,
fn_index=0
)
print(res0)
json_path = res0
def update():
result = "正在分析....."
job = client.submit(
json_path,
fn_index=1
)
response = job.result()
with open(response, 'r') as f:
data = json.load(f)
print(data)
result = data[-1][1]
threading.Thread(target=update).start()
return "正在分析..."
def output():
return gr.Markdown(value=result, label="分析")
def refresh():
global result
time.sleep(20)
return gr.Markdown(value=result, label="分析")
def reset_result():
global result
result = 0
def main(text_input="", image_input=None, unit=""):
if text_input and image_input is None:
return process_text(text_input, unit)
elif image_input is not None:
return process_image(image_input, unit)
with gr.Blocks(css=css, title="家庭医生AI助手", theme="soft") as iface:
with gr.Accordion(""):
gr.Markdown(DESCRIPTION)
unit = gr.Dropdown(label="🩺科室", value='中医科', elem_id="units",
choices=["中医科", "内科", "外科", "妇产科", "儿科", \
"五官科", "男科", "皮肤性病科", "传染科", "精神心理科", \
"整形美容科", "营养科", "生殖中心", "麻醉医学科", "医学影像科", \
"骨科", "肿瘤科", "急诊科", "检验科"])
with gr.Row():
output_box = output()
with gr.Row():
image_input = gr.Image(type="filepath", label="上传图片") # Create an image upload button
text_input = gr.Textbox(label="输入") # Create a text input box
with gr.Row():
submit_btn = gr.Button("🚀 确认") # Create a submit button
clear_btn = gr.ClearButton([output_box, image_input, text_input], value="🗑️ 清空") # Create a clear button
clear_btn.click(fn=reset_result)
gr.Markdown(LICENSE)
# Set up the event listeners
submit_btn.click(main, inputs=[text_input, image_input, unit], outputs=output_box)
output_box.change(fn=refresh)
#gr.close_all()
iface.queue().launch(show_api=False) # Launch the Gradio interface |