File size: 4,296 Bytes
1413b56
 
 
74f2fec
6528cf4
fc7835b
840baf8
1413b56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7375e2
7b2162d
1413b56
 
fe82302
ecdf02d
cf5ad9a
c81e1a9
 
83787a7
1413b56
 
8300a2c
cf5ad9a
c7375e2
840baf8
1413b56
d5c34d8
840baf8
1413b56
20f7f32
 
c81e1a9
 
cf5ad9a
ecdf02d
1413b56
f2b6def
1402965
 
fde171a
1402965
 
 
f2b6def
d706c35
1402965
b5e043e
3dc387b
1413b56
d706c35
 
7b2162d
840baf8
 
 
 
 
 
 
 
 
 
 
 
 
 
8e2ecdb
7b2162d
840baf8
 
7b2162d
c1af167
1413b56
 
8e2ecdb
1413b56
8e2ecdb
1413b56
cd70b5f
1413b56
 
 
 
 
 
 
 
840baf8
 
1413b56
6a59997
1413b56
 
 
840baf8
1413b56
79d6899
1413b56
79d6899
1413b56
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import base64
import gradio as gr
from gradio_client import Client, file
import time
import json
import threading

MODEL_NAME = "QWEN"
client_chat = os.environ.get("CHAT_URL")
client_vl = os.environ.get("VL_URL")
def read(filename):
    with open(filename) as f:
        data = f.read()
    return data
    
SYS_PROMPT = read('system_prompt.txt')

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">家庭医生demo</h1>
<p>🩺一个帮助您分析症状和检验报告的家庭医生(AI诊疗助手)。</p>
<p>🔎 选择您需要咨询的科室医生,在输入框中输入症状描述或者体检信息等;您也可以在图片框中上传检测报告图。</p>
<p>🦕 请注意生成信息可能不准确,且不具备任何实际参考价值,如有需要请联系专业医生。</p>
</div>
'''


css = """
h1 {
    text-align: center;
    display: block;
}
footer {
    display:none !important
}
"""


LICENSE = '采用 ' + MODEL_NAME + ' 模型'


result = "等待分析..."
json_path = ""

def process_text(text_input, unit):
    client = Client(client_chat)
    print(client.view_api())
    job = client.submit(
        query=str(text_input),
        history=None,
        system=f"You are a experienced {unit} doctor AI assistant." + SYS_PROMPT,
        api_name="/model_chat"
    )
    response = job.result()
    print(response)
    result = response[1][0][1]
    return result

def process_image(image_input, unit):
    global result, json_path
    if image_input is not None:
        image = str(image_input)
        print(image)
        #with open(image_input, "rb") as f:
        #   base64_image = base64.b64encode(f.read()).decode("utf-8")
        client = Client(client_vl)
        print(client.view_api())
        prompt = f" You are a experienced {unit} doctor AI assistant." + SYS_PROMPT + "Help me understand what is in this picture and analysis."
        
        res5 = client.predict(
            "",
            image,
            fn_index=5
        )
        print(res5)
        
        res0 = client.predict(
            res5,
            prompt,
            fn_index=0
        )
        
        print(res0)
        json_path = res0

        def update():
            job = client.submit(
                    json_path,
                    fn_index=1         
            )
            response = job.result(timeout=60)
            with open(response, 'r') as f:
                data = json.load(f)
            print(data)
            result = data[-1][1]
            
        threading.Thread(target=update).start()

        return "等待分析..."

def fetch_result():
    return result


def main(text_input="", image_input=None, unit=""):
    if text_input and image_input is None:
        return process_text(text_input, unit)
    elif image_input is not None:
        return process_image(image_input, unit)

with gr.Blocks(css=css, title="家庭医生AI助手") as iface:
    with gr.Accordion(""):
        gr.Markdown(DESCRIPTION)
        unit = gr.Dropdown(label="🩺科室", value='中医科', elem_id="units",
                            choices=["中医科", "内科", "外科", "妇产科",  "儿科", \
                                     "五官科", "男科", "皮肤性病科", "传染科", "精神心理科", \
                                        "整形美容科", "营养科", "生殖中心", "麻醉医学科", "医学影像科", \
                                            "骨科", "肿瘤科", "急诊科", "检验科"])
    with gr.Row():
        output_box = gr.Markdown(value=result, every=10, label="分析", fn=fetch_result)
        output_box.change(update)
    with gr.Row():
        image_input = gr.Image(type="filepath", label="上传图片")  # Create an image upload button
        text_input = gr.Textbox(label="输入")  # Create a text input box
    with gr.Row():
        submit_btn = gr.Button("🚀 确认")  # Create a submit button
        clear_btn = gr.ClearButton([output_box, image_input, text_input], value="🗑️ 清空") # Create a clear button


    # Set up the event listeners
    submit_btn.click(main, inputs=[text_input, image_input, unit], outputs=output_box)
    gr.Markdown(LICENSE)
    
#gr.close_all()

iface.queue().launch(show_api=False)  # Launch the Gradio interface