DeepSeek Distilled 32B Responding in Multi Language on English Prompting

#13
by bhaviktheslider - opened

Here is the response for one of prompts (I got more responses in multi language)

{think}
Okay, so I'm trying to figure out how to use the text to fill in the blank schema so that it ends up looking exactly like the filled schema. Let me start by understanding what each part is.
First, there's the Text and the Blank Schema. The Blank Schema must be a JSON structure with placeholders or empty fields where data needs to be filled in. Then, the Filled Schema is an example of what the final output should look like after filling in those blanks.
Looking at the goals, I need to compare both schemas and explain step-by-step how to use the text (which might contain instructions or content) to fill in the blank schema correctly. At the end, I have to ensure that my reasoning leads to a filled schema identical to the given one and explain why.
So, I'll start by examining the Blank Schema's structure. It probably has sections like根节点,children, id, title等。然后,我会看看在Filled Schema中,这些部分是如何填充的。例如,在Blank Schema中可能有空的components数组,而在Filled Schema中,components被填写了具体的类型、元数据和属性。
接下来,我需要确定Text中是否有特定的指导或内容可以帮助填充这些字段。比如,如果Text里有一段关于Compliance Risks的内容,那么在对应的节点下,components的content字段就会填上这段文字。
然后,我会检查变量部分。在Filled Schema中,每个component下的variables可能有具体的键值对。例如,在CHECKBOX组件里,有一个name为Confirmation、value为true的变量。这可能意味着Text中有特定的指示指出该复选框应被选中,或者在内容中提到这是一个确认点。
我还注意到,每个节点都有唯一的id,像是1.0, 2.1.1这样的结构,按照层次递增。因此,填充时需要确保id严格按照这个规律生成,避免重复或错误。
再看看content和metadata的区别。Content通常是放在component里的文本内容,而metadata可能包含其他类型的描述或标签信息,比如或者<content>标签中的文字。这可能意味着Text中需要分别处理这两种类型的信息来正确填充schema的各个部分。<br>此外,组件的类型如PARAGRAPH, TABLE, CHECKBOX在Filled Schema中有不同的结构。我需要确保根据Text中的内容选择正确的组件类型,并在对应的变量中填写合适的数据。<br>最后,我会检查整个树状结构,确保每个层次和子项都按照层级结构正确填充,没有遗漏或错误的节点,这样最终生成的JSON才会与Filled Schema一模一样。<br>{/think}</p>

i think the downside of thinking models is that even for simple question they may take alot of thinking tokens but i think we should have dataset to Train llms to figure out when to use thinking strategy and when to simply answer the question like regular llms do

Sign up or log in to comment