Spaces:
Running
on
Zero
Running
on
Zero
File size: 62,930 Bytes
5e54069 06b904d 7649165 c59adf8 ceb7ebf c59adf8 7649165 888e818 427ce39 7cf016f 99ff812 427ce39 3c30a0a 1461032 888e818 d441278 70438f0 a1d23de d441278 06b904d 3ea9b86 06b904d 731f4bf 06b904d 731f4bf 06b904d 731f4bf 06b904d 731f4bf 06b904d 731f4bf 06b904d 24dd7ba 06b904d 731f4bf e84487c 731f4bf 06b904d 731f4bf 06b904d 3ea9b86 e3d9c9e d29acc5 e3d9c9e 3ea9b86 70438f0 e3d9c9e 9fc1e97 e3d9c9e 9fc1e97 e3d9c9e 70438f0 731f4bf 70438f0 5d0a1ef 70438f0 9b80850 70438f0 5dddf57 70438f0 3ea9b86 e3d9c9e 3ea9b86 6d56dd1 e3d9c9e 6d56dd1 70438f0 aa22724 e48217c 8c68b8b e48217c 28a7e7e e3d9c9e 3ea9b86 28a7e7e 6d56dd1 7cf016f e3d9c9e bbd0dd5 6d56dd1 427ce39 6d56dd1 427ce39 70438f0 427ce39 70438f0 427ce39 8c68b8b e3d9c9e 7cf016f e3d9c9e 8c68b8b e3d9c9e 8c68b8b 7cf016f 8c68b8b 5411f5d 8c68b8b 6475331 e3d9c9e 6475331 e3d9c9e 6475331 e3d9c9e 6475331 c59adf8 caef0e2 8c68b8b 9f7c374 8c68b8b 70438f0 8c68b8b 70438f0 8c68b8b 7cf016f 8c68b8b 7cf016f aa984fe 8c68b8b 70438f0 e3d9c9e 6d56dd1 70438f0 7cf016f 6d56dd1 4a29c47 70438f0 1461032 5a14daf 70438f0 4a29c47 70438f0 4a29c47 70438f0 427ce39 6d56dd1 427ce39 36812ab 427ce39 70438f0 427ce39 4a29c47 427ce39 70438f0 1461032 70438f0 1461032 70438f0 1461032 70438f0 0724301 5b655f4 70438f0 427ce39 70438f0 3c30a0a 70438f0 7bde45c 70438f0 7bde45c f800f63 70438f0 f800f63 70438f0 f800f63 70438f0 f800f63 70438f0 f800f63 7bde45c 70438f0 f800f63 70438f0 f800f63 7bde45c c8b690c 78d61ea 7bde45c a4d86b2 7bde45c 427ce39 99ff812 aa984fe 99ff812 e3d9c9e 70438f0 8c68b8b e3d9c9e 8c68b8b 70438f0 e3d9c9e 646c8e8 e3d9c9e 646c8e8 e3d9c9e 8c68b8b e3d9c9e 8c68b8b e3d9c9e 8c68b8b e3d9c9e 8c68b8b e3d9c9e 8c68b8b e3d9c9e 3dae8f9 5d0a1ef e3d9c9e d45c437 e3d9c9e 8c68b8b 70438f0 e3d9c9e 6d56dd1 70438f0 e3d9c9e 70438f0 427ce39 4a29c47 427ce39 70438f0 4a29c47 70438f0 0b6cc7c 6475331 e3d9c9e 6475331 f425ecd 70438f0 a4568c6 7bde45c e3d9c9e 7bde45c 4a29c47 99ff812 7cf016f 06b904d 99ff812 8c68b8b 7cf016f 70438f0 4a29c47 5dddf57 4417549 731f4bf 06b904d 427ce39 6dfc92e 427ce39 a3f71ba 70438f0 427ce39 e045021 427ce39 99ff812 8c68b8b 7cf016f 427ce39 99ff812 8c68b8b 7cf016f 427ce39 99ff812 427ce39 e79159f 6bea290 e79159f 233e4b4 e79159f 427ce39 e3d9c9e 70438f0 8c68b8b 744c18a e3d9c9e 8c68b8b e3d9c9e 70438f0 8c68b8b e3d9c9e 8c68b8b e3d9c9e 427ce39 e045021 427ce39 e045021 427ce39 7cf016f 427ce39 70438f0 427ce39 e3d9c9e 8c68b8b 7cf016f 70438f0 7cf016f 427ce39 8c68b8b 427ce39 8c68b8b 427ce39 e79159f 427ce39 70438f0 427ce39 8c68b8b 427ce39 e79159f 427ce39 70438f0 427ce39 8c68b8b 7cf016f e3d9c9e 427ce39 e045021 427ce39 e79159f 427ce39 70438f0 427ce39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 |
import spaces
import boto3
from botocore.exceptions import NoCredentialsError, ClientError
from botocore.client import Config
import os, pathlib
CACHE_ROOT = "/home/user/app/cache" # any folder you own
os.environ.update(
TORCH_HOME = f"{CACHE_ROOT}/torch",
XDG_CACHE_HOME = f"{CACHE_ROOT}/xdg", # torch fallback
PYANNOTE_CACHE = f"{CACHE_ROOT}/pyannote",
HF_HOME = f"{CACHE_ROOT}/huggingface",
TRANSFORMERS_CACHE= f"{CACHE_ROOT}/transformers",
MPLCONFIGDIR = f"{CACHE_ROOT}/mpl",
)
INITIAL_PROMPT = '''
Use normal punctuation; end sentences properly.
'''
# make sure the directories exist
for path in os.environ.values():
pathlib.Path(path).mkdir(parents=True, exist_ok=True)
import gradio as gr
import torch
import torchaudio
import numpy as np
import pandas as pd
import time
import datetime
import re
import subprocess
import os
import tempfile
import spaces
from faster_whisper import WhisperModel, BatchedInferencePipeline
from faster_whisper.vad import VadOptions
import requests
import base64
from pyannote.audio import Pipeline, Inference, Model
from pyannote.core import Segment
import os, sys, importlib.util, pathlib, ctypes, tempfile, wave, math
import json
import webrtcvad
spec = importlib.util.find_spec("nvidia.cudnn")
if spec is None:
sys.exit("β nvidia-cudnn-cu12 wheel not found. Run: pip install nvidia-cudnn-cu12")
cudnn_dir = pathlib.Path(spec.origin).parent / "lib"
cnn_so = cudnn_dir / "libcudnn_cnn.so.9"
try:
ctypes.CDLL(cnn_so, mode=ctypes.RTLD_GLOBAL)
print(f"β Pre-loaded {cnn_so}")
except OSError as e:
sys.exit(f"β Could not load {cnn_so} : {e}")
S3_ENDPOINT = os.getenv("S3_ENDPOINT")
S3_ACCESS_KEY = os.getenv("S3_ACCESS_KEY")
S3_SECRET_KEY = os.getenv("S3_SECRET_KEY")
# Function to upload file to Cloudflare R2
def upload_data_to_r2(data, bucket_name, object_name, content_type='application/octet-stream'):
"""
Upload data directly to a Cloudflare R2 bucket.
:param data: Data to upload (bytes or string).
:param bucket_name: Name of the R2 bucket.
:param object_name: Name of the object to save in the bucket.
:param content_type: MIME type of the data.
:return: True if data was uploaded, else False.
"""
try:
# Convert string to bytes if necessary
if isinstance(data, str):
data = data.encode('utf-8')
# Initialize a session using Cloudflare R2 credentials
session = boto3.session.Session()
s3 = session.client('s3',
endpoint_url=f'https://{S3_ENDPOINT}',
aws_access_key_id=S3_ACCESS_KEY,
aws_secret_access_key=S3_SECRET_KEY,
config = Config(s3={"addressing_style": "virtual", 'payload_signing_enabled': False}, signature_version='v4',
request_checksum_calculation='when_required',
response_checksum_validation='when_required',),
)
# Upload the data to R2 bucket
s3.put_object(
Bucket=bucket_name,
Key=object_name,
Body=data,
ContentType=content_type,
ContentLength=len(data), # make length explicit to avoid streaming
)
print(f"Data uploaded to R2 bucket '{bucket_name}' as '{object_name}'")
return True
except NoCredentialsError:
print("Credentials not available")
return False
except ClientError as e:
print(f"Failed to upload data to R2 bucket: {e}")
return False
except Exception as e:
print(f"An unexpected error occurred: {e}")
return False
from huggingface_hub import snapshot_download
# -----------------------------------------------------------------------------
# Model Management
# -----------------------------------------------------------------------------
MODELS = {
"large-v3-turbo": {
"repo_id": "deepdml/faster-whisper-large-v3-turbo-ct2",
"local_dir": f"{CACHE_ROOT}/whisper_turbo_v3"
},
"large-v3": {
"repo_id": "Systran/faster-whisper-large-v3",
"local_dir": f"{CACHE_ROOT}/whisper_large_v3"
},
"large-v2": {
"repo_id": "Systran/faster-whisper-large-v2",
"local_dir": f"{CACHE_ROOT}/whisper_large_v2"
},
}
DEFAULT_MODEL = "large-v3-turbo"
def _download_model(model_name: str):
"""Downloads a model from the hub if not already present."""
if model_name not in MODELS:
raise ValueError(f"Model '{model_name}' not found in MODELS registry.")
model_info = MODELS[model_name]
if not os.path.exists(model_info["local_dir"]):
print(f"Downloading model '{model_name}' from {model_info['repo_id']}...")
snapshot_download(
repo_id=model_info["repo_id"],
local_dir=model_info["local_dir"],
local_dir_use_symlinks=True,
resume_download=True
)
return model_info["local_dir"]
# Download the default model on startup
for model in MODELS:
_download_model(model)
# -----------------------------------------------------------------------------
# Audio preprocess helper (from input_and_preprocess rule)
# -----------------------------------------------------------------------------
TRIM_THRESHOLD_MS = 10_000 # 10 seconds
DEFAULT_PAD_MS = 250 # safety context around detected speech
FRAME_MS = 30 # VAD frame
HANG_MS = 240 # hangover (keep speech "on" after silence)
VAD_LEVEL = 2 # 0-3
def _decode_chunk_to_pcm(task: dict) -> bytes:
"""Use ffmpeg to decode the chunk to s16le mono @ 16k PCM bytes."""
src = task["source_uri"]
ing = task["ingest_recipe"]
seek = task["ffmpeg_seek"]
cmd = [
"ffmpeg", "-nostdin", "-hide_banner", "-v", "error",
"-ss", f"{max(0.0, float(seek['pre_ss_sec'])):.3f}",
"-i", src,
"-map", "0:a:0",
"-ss", f"{float(seek['post_ss_sec']):.2f}",
"-t", f"{float(seek['t_sec']):.3f}",
]
# Optional L/R extraction
if ing.get("channel_extract_filter"):
cmd += ["-af", ing["channel_extract_filter"]]
# Force mono 16k s16le to stdout
cmd += ["-ar", "16000", "-ac", "1", "-c:a", "pcm_s16le", "-f", "s16le", "pipe:1"]
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
pcm, err = p.communicate()
if p.returncode != 0:
raise RuntimeError(f"ffmpeg failed: {err.decode('utf-8', 'ignore')}")
return pcm
def _find_head_tail_speech_ms(
pcm: bytes,
sr: int = 16000,
frame_ms: int = FRAME_MS,
vad_level: int = VAD_LEVEL,
hang_ms: int = HANG_MS,
):
"""Return (first_ms, last_ms) speech boundaries using webrtcvad with hangover."""
if not pcm:
return None, None
vad = webrtcvad.Vad(int(vad_level))
bpf = 2 # bytes per sample (s16)
samples_per_ms = sr // 1000 # 16
bytes_per_frame = samples_per_ms * bpf * frame_ms
n_frames = len(pcm) // bytes_per_frame
if n_frames == 0:
return None, None
first_ms, last_ms = None, None
t_ms = 0
in_speech = False
silence_run = 0
view = memoryview(pcm)[: n_frames * bytes_per_frame]
for i in range(n_frames):
frame = view[i * bytes_per_frame : (i + 1) * bytes_per_frame]
if vad.is_speech(frame, sr):
if first_ms is None:
first_ms = t_ms
in_speech = True
silence_run = 0
else:
if in_speech:
silence_run += frame_ms
if silence_run >= hang_ms:
last_ms = t_ms - (silence_run - hang_ms)
in_speech = False
silence_run = 0
t_ms += frame_ms
if in_speech:
last_ms = t_ms
return first_ms, last_ms
def _write_wav(path: str, pcm: bytes, sr: int = 16000):
os.makedirs(os.path.dirname(path), exist_ok=True)
with wave.open(path, "wb") as w:
w.setnchannels(1)
w.setsampwidth(2) # s16
w.setframerate(sr)
w.writeframes(pcm)
def prepare_and_save_audio_for_model(task: dict, out_dir: str) -> dict:
"""
1) Decode chunk(s) to mono 16k PCM.
2) Run VAD to locate head/tail silence.
3) Trim only if head or tail >= 10s.
4) Save the (possibly trimmed) WAV to local file(s).
5) Return timing metadata, including 'trimmed_start_ms' to preserve global timestamps.
Args:
task: dict containing either:
- "chunk": single chunk dict, or
- "chunk": list of chunk dicts
out_dir: output directory for WAV files
Returns:
A wrapper dict with general fields (e.g., job_id, channel, sr, filekey)
and a "chunks" array containing metadata dict(s) for each processed chunk.
This structure is returned for both single and multiple chunk inputs.
"""
chunks = task["chunk"]
result = {
"job_id": task.get("job_id", "job"),
"channel": task["channel"],
"sr": 16000,
"options": task.get("options", None),
"filekey": task.get("filekey", None),
}
# Handle both single chunk and multiple chunks
if isinstance(chunks, list):
# Process multiple chunks
results = []
for chunk in chunks:
# Create a task for each chunk
single_chunk_task = task.copy()
single_chunk_task["chunk"] = chunk
chunk_result = _process_single_chunk(single_chunk_task, out_dir)
results.append(chunk_result)
# Compose wrapper dict with general fields applicable to all chunks
result["chunks"] = results
else:
# Process single chunk and wrap in the standard response structure
chunk_result = _process_single_chunk(task, out_dir)
result["chunk"] = chunk_result
return result
def _process_single_chunk(task: dict, out_dir: str) -> dict:
"""
Process a single chunk - extracted from the original prepare_and_save_audio_for_model logic.
1) Decode chunk to mono 16k PCM.
2) Run VAD to locate head/tail silence.
3) Trim only if head or tail >= 10s.
4) Save the (possibly trimmed) WAV to local file.
5) Return timing metadata, including 'trimmed_start_ms' to preserve global timestamps.
"""
# 0) Names & constants
sr = 16000
bpf = 2
samples_per_ms = sr // 1000
def bytes_from_ms(ms: int) -> int:
return int(ms * samples_per_ms) * bpf
ch = task["channel"]
ck = task["chunk"]
job = task.get("job_id", "job")
idx = str(ck["idx"])
# 1) Decode chunk
pcm = _decode_chunk_to_pcm(task)
planned_dur_ms = int(ck["dur_ms"])
# 2) VAD head/tail detection
first_ms, last_ms = _find_head_tail_speech_ms(pcm, sr=sr)
head_sil_ms = int(first_ms) if first_ms is not None else planned_dur_ms
tail_sil_ms = int(planned_dur_ms - last_ms) if last_ms is not None else planned_dur_ms
# 3) Decide trimming (only if head or tail >= 10s)
trim_applied = False
eff_start_ms = 0
eff_end_ms = planned_dur_ms
trimmed_pcm = pcm
if (head_sil_ms >= TRIM_THRESHOLD_MS) or (tail_sil_ms >= TRIM_THRESHOLD_MS):
# If no speech found at all, mark skip
if first_ms is None or last_ms is None or last_ms <= first_ms:
out_wav_path = os.path.join(out_dir, f"{job}_{ch}_{idx}_nospeech.wav")
_write_wav(out_wav_path, b"", sr)
return {
"out_wav_path": out_wav_path,
"sr": sr,
"trim_applied": False,
"trimmed_start_ms": 0,
"head_silence_ms": head_sil_ms,
"tail_silence_ms": tail_sil_ms,
"effective_start_ms": 0,
"effective_dur_ms": 0,
"abs_start_ms": ck["global_offset_ms"],
"dur_ms": ck["dur_ms"],
"chunk_idx": idx,
"channel": ch,
"skip": True,
}
# Apply padding & slice
start_ms = max(0, int(first_ms) - DEFAULT_PAD_MS)
end_ms = min(planned_dur_ms, int(last_ms) + DEFAULT_PAD_MS)
if end_ms > start_ms:
eff_start_ms = start_ms
eff_end_ms = end_ms
trimmed_pcm = pcm[bytes_from_ms(start_ms) : bytes_from_ms(end_ms)]
trim_applied = True
# 4) Write WAV to local file (trimmed or original)
tag = "trim" if trim_applied else "full"
out_wav_path = os.path.join(out_dir, f"{job}_{ch}_{idx}_{tag}.wav")
_write_wav(out_wav_path, trimmed_pcm, sr)
# 5) Return metadata
return {
"out_wav_path": out_wav_path,
"sr": sr,
"trim_applied": trim_applied,
"trimmed_start_ms": eff_start_ms if trim_applied else 0,
"head_silence_ms": head_sil_ms,
"tail_silence_ms": tail_sil_ms,
"effective_start_ms": eff_start_ms,
"effective_dur_ms": eff_end_ms - eff_start_ms,
"abs_start_ms": int(ck["global_offset_ms"]) + eff_start_ms,
"dur_ms": ck["dur_ms"],
"chunk_idx": idx,
"channel": ch,
"job_id": job,
"skip": False if (trim_applied or len(pcm) > 0) else True,
}
# Download once; later runs are instant
# snapshot_download(
# repo_id=MODEL_REPO,
# local_dir=LOCAL_DIR,
# local_dir_use_symlinks=True, # saves disk space
# resume_download=True
# )
# model_cache_path = LOCAL_DIR # <ββ this is what we pass to WhisperModel
# Lazy global holder ----------------------------------------------------------
_whisper_models = {}
_batched_whisper_models = {}
_diarizer = None
_embedder = None
# Create global diarization pipeline
try:
print("Loading diarization model...")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
_diarizer = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.getenv("HF_TOKEN"),
).to(torch.device("cuda"))
print("Diarization model loaded successfully")
except Exception as e:
import traceback
traceback.print_exc()
print(f"Could not load diarization model: {e}")
_diarizer = None
@spaces.GPU # GPU is guaranteed to exist *inside* this function
def _load_models(model_name: str = DEFAULT_MODEL):
global _whisper_models, _batched_whisper_models, _diarizer
if model_name not in _whisper_models:
print(f"Loading Whisper model '{model_name}'...")
model_cache_path = _download_model(model_name)
model = WhisperModel(
model_cache_path,
device="cuda",
compute_type="float16",
)
# Create batched inference pipeline for improved performance
batched_model = BatchedInferencePipeline(model=model)
_whisper_models[model_name] = model
_batched_whisper_models[model_name] = batched_model
print(f"Whisper model '{model_name}' and batched pipeline loaded successfully")
whisper = _whisper_models[model_name]
batched_whisper = _batched_whisper_models[model_name]
return whisper, batched_whisper, _diarizer
# -----------------------------------------------------------------------------
class WhisperTranscriber:
def __init__(self):
# do **not** create the models here!
pass
def preprocess_from_task_json(self, task_json: str) -> dict:
"""Parse task JSON and run prepare_and_save_audio_for_model, returning metadata."""
try:
task = json.loads(task_json)
except Exception as e:
raise RuntimeError(f"Invalid JSON: {e}")
out_dir = os.path.join(CACHE_ROOT, "preprocessed")
os.makedirs(out_dir, exist_ok=True)
meta = prepare_and_save_audio_for_model(task, out_dir)
return meta
@spaces.GPU # each call gets a GPU slice
def transcribe_full_audio(self, audio_path, language=None, translate=False, prompt=None, batch_size=16, base_offset_s: float = 0.0, clip_timestamps=None, model_name: str = DEFAULT_MODEL, transcribe_options: dict = None):
"""Transcribe the entire audio file without speaker diarization using batched inference"""
whisper, batched_whisper, _ = _load_models(model_name) # models live on the GPU
print(f"Transcribing full audio with '{model_name}' and batch size {batch_size}...")
start_time = time.time()
# Prepare options for batched inference
options = dict(
language=language,
beam_size=5,
word_timestamps=True,
initial_prompt=prompt,
condition_on_previous_text=False, # avoid runaway context
language_detection_segments=1,
task="translate" if translate else "transcribe",
)
if clip_timestamps:
options["vad_filter"] = False
options["clip_timestamps"] = clip_timestamps
else:
vad_options = transcribe_options.get("vad_parameters", None)
options["vad_filter"] = True # VAD is enabled by default for batched transcription
options["vad_parameters"] = VadOptions(**vad_options) if vad_options else VadOptions(
max_speech_duration_s=whisper.feature_extractor.chunk_length,
min_speech_duration_ms=180, # ignore ultra-short blips
min_silence_duration_ms=120, # split on short Mandarin pauses (if supported)
speech_pad_ms=120,
threshold=0.35,
neg_threshold=0.2,
)
if batch_size > 1:
# Use batched inference for better performance
segments, transcript_info = batched_whisper.transcribe(
audio_path,
batch_size=batch_size,
**options
)
else:
segments, transcript_info = whisper.transcribe(
audio_path,
**options
)
segments = list(segments)
detected_language = transcript_info.language
print("Detected language: ", detected_language, "segments: ", len(segments))
# Process segments
results = []
for seg in segments:
# Create result entry with detailed format
words_list = []
if seg.words:
for word in seg.words:
words_list.append({
"start": float(word.start) + float(base_offset_s),
"end": float(word.end) + float(base_offset_s),
"word": word.word,
"probability": word.probability,
"speaker": "SPEAKER_00" # No speaker identification in full transcription
})
results.append({
"start": float(seg.start) + float(base_offset_s),
"end": float(seg.end) + float(base_offset_s),
"text": seg.text,
"speaker": "SPEAKER_00", # Single speaker assumption
"avg_logprob": seg.avg_logprob,
"words": words_list,
"duration": float(seg.end - seg.start)
})
transcription_time = time.time() - start_time
print(f"Full audio transcribed in {transcription_time:.2f} seconds using batch size {batch_size}")
print(results)
return results, detected_language
# Removed audio cutting; transcription is done once on the full (preprocessed) audio
@spaces.GPU # each call gets a GPU slice
def perform_diarization(self, audio_path, num_speakers=None, base_offset_s: float = 0.0):
"""Perform speaker diarization; return segments with global timestamps and per-speaker embeddings."""
_, _, diarizer = _load_models() # models live on the GPU
if diarizer is None:
print("Diarization model not available, creating single speaker segment")
# Load audio to get duration
waveform, sample_rate = torchaudio.load(audio_path)
duration = waveform.shape[1] / sample_rate
# Try to compute a single-speaker embedding
speaker_embeddings = {}
try:
embedder = self._load_embedder()
# Provide waveform as (channel, time) and pad if too short
min_embed_duration_sec = 3.0
min_samples = int(min_embed_duration_sec * sample_rate)
if waveform.shape[1] < min_samples:
pad_len = min_samples - waveform.shape[1]
pad = torch.zeros(waveform.shape[0], pad_len, dtype=waveform.dtype, device=waveform.device)
waveform = torch.cat([waveform, pad], dim=1)
emb = embedder({"waveform": waveform, "sample_rate": sample_rate})
speaker_embeddings["SPEAKER_00"] = emb.squeeze().tolist()
except Exception:
pass
return [{
"start": 0.0 + float(base_offset_s),
"end": duration + float(base_offset_s),
"speaker": "SPEAKER_00"
}], 1, speaker_embeddings
print("Starting diarization...")
start_time = time.time()
# Load audio for diarization
waveform, sample_rate = torchaudio.load(audio_path)
# Perform diarization
diarization = diarizer(
{"waveform": waveform, "sample_rate": sample_rate},
num_speakers=num_speakers,
)
# Convert to list format
diarize_segments = []
diarization_list = list(diarization.itertracks(yield_label=True))
print(diarization_list)
for turn, _, speaker in diarization_list:
diarize_segments.append({
"start": float(turn.start) + float(base_offset_s),
"end": float(turn.end) + float(base_offset_s),
"speaker": speaker
})
unique_speakers = {speaker for segment in diarize_segments for speaker in [segment["speaker"]]}
detected_num_speakers = len(unique_speakers)
# Compute per-speaker embeddings by averaging segment embeddings
speaker_embeddings = {}
try:
embedder = self._load_embedder()
spk_to_embs = {spk: [] for spk in unique_speakers}
# Primary path: slice in-memory waveform and zero-pad short segments
min_embed_duration_sec = 3.0
audio_duration_sec = float(waveform.shape[1]) / float(sample_rate)
for turn, _, speaker in diarization_list:
seg_start = float(turn.start)
seg_end = float(turn.end)
if seg_end <= seg_start:
continue
start_sample = max(0, int(seg_start * sample_rate))
end_sample = min(waveform.shape[1], int(seg_end * sample_rate))
if end_sample <= start_sample:
continue
seg_wav = waveform[:, start_sample:end_sample].contiguous()
min_samples = int(min_embed_duration_sec * sample_rate)
if seg_wav.shape[1] < min_samples:
pad_len = min_samples - seg_wav.shape[1]
pad = torch.zeros(seg_wav.shape[0], pad_len, dtype=seg_wav.dtype, device=seg_wav.device)
seg_wav = torch.cat([seg_wav, pad], dim=1)
try:
emb = embedder({"waveform": seg_wav, "sample_rate": sample_rate})
except Exception:
# Fallback: use crop on the file with expanded window to minimum duration
desired_end = min(seg_start + min_embed_duration_sec, audio_duration_sec)
desired_start = max(0.0, desired_end - min_embed_duration_sec)
emb = embedder.crop(audio_path, Segment(desired_start, desired_end))
spk_to_embs[speaker].append(emb.squeeze())
# average
for spk, embs in spk_to_embs.items():
if len(embs) == 0:
continue
# stack and mean
try:
import torch as _torch
embs_tensor = _torch.stack([_torch.as_tensor(e) for e in embs], dim=0)
centroid = embs_tensor.mean(dim=0)
# L2 normalize
centroid = centroid / (centroid.norm(p=2) + 1e-12)
speaker_embeddings[spk] = centroid.cpu().tolist()
except Exception:
# fallback to first embedding
speaker_embeddings[spk] = embs[0].cpu().tolist()
#print(speaker_embeddings[spk])
except Exception as e:
print(f"Error during embedding calculation: {e}")
print(f"Diarization segments: {diarize_segments}")
pass
diarization_time = time.time() - start_time
print(f"Diarization completed in {diarization_time:.2f} seconds")
return diarize_segments, detected_num_speakers, speaker_embeddings
def _load_embedder(self):
"""Lazy-load speaker embedding inference model on GPU."""
global _embedder
if _embedder is None:
# window="whole" to compute one embedding per provided chunk
token = os.getenv("HF_TOKEN")
model = Model.from_pretrained("pyannote/embedding", use_auth_token=token)
_embedder = Inference(model, window="whole", device=torch.device("cuda"))
return _embedder
def assign_speakers_to_transcription(self, transcription_results, diarization_segments):
"""Assign speakers to words and segments based on overlap with diarization segments.
Also detects diarization segments that do not overlap any transcription segment and
returns them so they can be re-processed (e.g., re-transcribed) later.
"""
if not diarization_segments:
return transcription_results, []
# Helper: find the diarization speaker active at time t, or closest
def speaker_at(t: float):
for dseg in diarization_segments:
if float(dseg["start"]) <= t < float(dseg["end"]):
return dseg["speaker"]
# if not inside, return closest segment's speaker
closest = None
best_dist = float("inf")
for dseg in diarization_segments:
if t < float(dseg["start"]):
d = float(dseg["start"]) - t
elif t > float(dseg["end"]):
d = t - float(dseg["end"])
else:
d = 0.0
if d < best_dist:
best_dist = d
closest = dseg
return closest["speaker"] if closest else "SPEAKER_00"
# Helper: overlap length between two intervals
def interval_overlap(a_start: float, a_end: float, b_start: float, b_end: float) -> float:
return max(0.0, min(a_end, b_end) - max(a_start, b_start))
# Helper: choose speaker for an interval by maximum overlap with diarization
def best_speaker_for_interval(start_t: float, end_t: float) -> str:
best_spk = None
best_ov = -1.0
for dseg in diarization_segments:
ov = interval_overlap(float(start_t), float(end_t), float(dseg["start"]), float(dseg["end"]))
if ov > best_ov:
best_ov = ov
best_spk = dseg["speaker"]
if best_ov > 0.0 and best_spk is not None:
return best_spk
# fallback to nearest by midpoint
mid = (float(start_t) + float(end_t)) / 2.0
return speaker_at(mid)
# First pass: assign speakers to words and apply smoothing
for seg in transcription_results:
if seg.get("words"):
words = seg["words"]
# 1) Initial assignment by overlap
for w in words:
w_start = float(w["start"])
w_end = float(w["end"])
w["speaker"] = best_speaker_for_interval(w_start, w_end)
# 2) Small median filter (window=3) to fix isolated outliers
if len(words) >= 3:
smoothed = [words[i]["speaker"] for i in range(len(words))]
for i in range(1, len(words) - 1):
prev_spk = words[i - 1]["speaker"]
curr_spk = words[i]["speaker"]
next_spk = words[i + 1]["speaker"]
if prev_spk == next_spk and curr_spk != prev_spk:
smoothed[i] = prev_spk
for i in range(len(words)):
words[i]["speaker"] = smoothed[i]
else:
# No word timings: choose by overlap with diarization over the whole segment
seg["speaker"] = best_speaker_for_interval(float(seg["start"]), float(seg["end"]))
# Second pass: split segments that have speaker changes within them
split_segments = []
for seg in transcription_results:
words = seg.get("words", [])
if not words or len(words) <= 1:
# No words or single word - can't split, assign speaker directly
if not words:
seg["speaker"] = best_speaker_for_interval(float(seg["start"]), float(seg["end"]))
else:
seg["speaker"] = words[0].get("speaker", "SPEAKER_00")
split_segments.append(seg)
continue
# Find speaker transition points with minimum duration filter
current_speaker = words[0].get("speaker", "SPEAKER_00")
split_points = [0] # Always start with first word
min_segment_duration = 0.5 # Minimum 0.5 seconds per segment
for i in range(1, len(words)):
word_speaker = words[i].get("speaker", "SPEAKER_00")
if word_speaker != current_speaker:
# Check if this would create a segment that's too short
if split_points:
last_split = split_points[-1]
segment_start_time = float(words[last_split]["start"])
current_word_time = float(words[i-1]["end"])
segment_duration = current_word_time - segment_start_time
# Only split if the previous segment would be long enough
if segment_duration >= min_segment_duration:
split_points.append(i)
current_speaker = word_speaker
# If too short, continue without splitting (speaker will be resolved by dominant speaker logic)
else:
split_points.append(i)
current_speaker = word_speaker
split_points.append(len(words)) # End point
# Create sub-segments if we found speaker changes
if len(split_points) <= 2:
# No splits needed - process as single segment
self._assign_dominant_speaker_to_segment(seg, speaker_at, best_speaker_for_interval)
split_segments.append(seg)
else:
# Split into multiple segments
for i in range(len(split_points) - 1):
start_idx = split_points[i]
end_idx = split_points[i + 1]
if end_idx <= start_idx:
continue
subseg_words = words[start_idx:end_idx]
if not subseg_words:
continue
# Calculate segment timing and text from words
subseg_start = float(subseg_words[0]["start"])
subseg_end = float(subseg_words[-1]["end"])
subseg_text = " ".join(w.get("word", "").strip() for w in subseg_words if w.get("word", "").strip())
# Create new sub-segment
new_seg = {
"start": subseg_start,
"end": subseg_end,
"text": subseg_text,
"words": subseg_words,
"duration": subseg_end - subseg_start,
}
# Copy over other fields from original segment if they exist
for key in ["avg_logprob"]:
if key in seg:
new_seg[key] = seg[key]
# Assign dominant speaker to this sub-segment
self._assign_dominant_speaker_to_segment(new_seg, speaker_at, best_speaker_for_interval)
split_segments.append(new_seg)
# Update transcription_results with split segments
transcription_results = split_segments
# Identify diarization segments that have no overlapping transcription segments
unmatched_diarization_segments = []
for dseg in diarization_segments:
d_start = float(dseg["start"])
d_end = float(dseg["end"])
# Calculate total coverage
total_coverage = 0.0
for s in transcription_results:
overlap = interval_overlap(d_start, d_end, float(s["start"]), float(s["end"]))
total_coverage += overlap
coverage_ratio = total_coverage / (d_end - d_start)
is_well_covered = coverage_ratio >= 0.85 # 85% or more covered
if not is_well_covered and (d_end - d_start)*(1-coverage_ratio) > 1.5: # If poorly covered, add to unmatched list
unmatched_diarization_segments.append({
"start": d_start,
"end": d_end,
"speaker": dseg["speaker"],
})
print("unmatched_diarization_segments", unmatched_diarization_segments)
return transcription_results, unmatched_diarization_segments
def _assign_dominant_speaker_to_segment(self, seg, speaker_at_func, best_speaker_for_interval_func):
"""Assign dominant speaker to a segment based on word durations and boundary stabilization."""
words = seg.get("words", [])
if not words:
# No words: use segment-level overlap
seg["speaker"] = best_speaker_for_interval_func(float(seg["start"]), float(seg["end"]))
return
# 1) Determine dominant speaker by summed word durations
speaker_dur = {}
total_word_dur = 0.0
for w in words:
dur = max(0.0, float(w["end"]) - float(w["start"]))
total_word_dur += dur
spk = w.get("speaker", "SPEAKER_00")
speaker_dur[spk] = speaker_dur.get(spk, 0.0) + dur
if speaker_dur:
dominant_speaker = max(speaker_dur.items(), key=lambda kv: kv[1])[0]
else:
dominant_speaker = speaker_at_func((float(seg["start"]) + float(seg["end"])) / 2.0)
# 2) Boundary stabilization: relabel tiny prefix/suffix runs to dominant
seg_duration = max(1e-6, float(seg["end"]) - float(seg["start"]))
max_boundary_sec = 0.5 # hard cap for how much to relabel at edges
max_boundary_frac = 0.2 # or up to 20% of the segment duration
# prefix
prefix_dur = 0.0
prefix_count = 0
for w in words:
if w.get("speaker") == dominant_speaker:
break
prefix_dur += max(0.0, float(w["end"]) - float(w["start"]))
prefix_count += 1
if prefix_count > 0 and prefix_dur <= min(max_boundary_sec, max_boundary_frac * seg_duration):
for i in range(prefix_count):
words[i]["speaker"] = dominant_speaker
# suffix
suffix_dur = 0.0
suffix_count = 0
for w in reversed(words):
if w.get("speaker") == dominant_speaker:
break
suffix_dur += max(0.0, float(w["end"]) - float(w["start"]))
suffix_count += 1
if suffix_count > 0 and suffix_dur <= min(max_boundary_sec, max_boundary_frac * seg_duration):
for i in range(len(words) - suffix_count, len(words)):
words[i]["speaker"] = dominant_speaker
# 3) Final segment speaker
seg["speaker"] = dominant_speaker
def group_segments_by_speaker(self, segments, max_gap=1.0, max_duration=30.0):
"""Group consecutive segments from the same speaker"""
if not segments:
return segments
grouped_segments = []
current_group = segments[0].copy()
sentence_end_pattern = r"[.!?]+"
for segment in segments[1:]:
time_gap = segment["start"] - current_group["end"]
current_duration = current_group["end"] - current_group["start"]
# Conditions for combining segments
can_combine = (
segment["speaker"] == current_group["speaker"] and
time_gap <= max_gap and
current_duration < max_duration and
not re.search(sentence_end_pattern, current_group["text"][-1:])
)
if can_combine:
# Merge segments
current_group["end"] = segment["end"]
current_group["text"] += " " + segment["text"]
current_group["words"].extend(segment["words"])
current_group["duration"] = current_group["end"] - current_group["start"]
else:
# Start new group
grouped_segments.append(current_group)
current_group = segment.copy()
grouped_segments.append(current_group)
# Clean up text
for segment in grouped_segments:
segment["text"] = re.sub(r"\s+", " ", segment["text"]).strip()
#segment["text"] = re.sub(r"\s+([.,!?])", r"\1", segment["text"])
return grouped_segments
@spaces.GPU
def process_audio_transcribe(self, task_json, language=None,
translate=False, prompt=None, batch_size=8, model_name: str = DEFAULT_MODEL):
"""Main processing function with diarization using task JSON for a single chunk.
Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription.
"""
if not task_json or not str(task_json).strip():
return {"error": "No JSON provided"}
pre_meta = None
try:
print("Starting new processing pipeline...")
# Step 1: Preprocess per chunk JSON
print("Preprocessing chunk JSON...")
pre_meta = self.preprocess_from_task_json(task_json)
transcribe_options = pre_meta.get("options", None)
if "chunk" in pre_meta:
return self.transcribe_chunk(pre_meta, language, translate, prompt, batch_size, model_name, transcribe_options)
elif "segments" in pre_meta:
return self.transcribe_segments(pre_meta, language, translate, prompt, batch_size, model_name, transcribe_options)
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Processing failed: {str(e)}"}
@spaces.GPU
def transcribe_chunk(self, pre_meta, language=None,
translate=False, prompt=None, batch_size=8, model_name: str = DEFAULT_MODEL, transcribe_options: dict = None):
"""Main processing function with diarization using task JSON for a single chunk.
Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription.
"""
try:
print("Transcribing chunk...")
# Step 1: Preprocess per chunk JSON
if pre_meta["chunk"].get("skip"):
return {"segments": [], "language": "unknown", "num_speakers": 0, "transcription_method": "diarized_segments_batched", "batch_size": batch_size}
wav_path = pre_meta["chunk"]["out_wav_path"]
base_offset_s = float(pre_meta["chunk"].get("abs_start_ms", 0)) / 1000.0
# Step 2: Transcribe full audio once
transcription_results, detected_language = self.transcribe_full_audio(
wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s, clip_timestamps=None, model_name=model_name, transcribe_options=transcribe_options
)
# Step 6: Return results
result = {
"segments": transcription_results,
"language": detected_language,
"batch_size": batch_size,
}
# job_id = pre_meta["job_id"]
# task_id = pre_meta["chunk_idx"]
filekey = pre_meta["filekey"]#f"ai-transcribe/split/{job_id}-{task_id}.json"
ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey)
if ret:
return {"filekey": filekey}
else:
return {"error": "Failed to upload to R2"}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Processing failed: {str(e)}"}
finally:
# Clean up preprocessed wav
if pre_meta and pre_meta["chunk"].get("out_wav_path") and os.path.exists(pre_meta["chunk"]["out_wav_path"]):
try:
os.unlink(pre_meta["chunk"]["out_wav_path"])
except Exception:
pass
@spaces.GPU
def transcribe_segments(self, pre_meta, language=None,
translate=False, prompt=None, batch_size=8, model_name: str = DEFAULT_MODEL, transcribe_options: dict = None):
"""Main processing function with diarization using task JSON for a single chunk.
Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription.
"""
try:
print("Transcribing segments...")
# Step 1: Preprocess per chunk JSON
chunks = pre_meta["segments"]
for chunk in chunks:
if chunk.get("skip"):
return {"segments": [], "language": "unknown", "num_speakers": 0, "transcription_method": "diarized_segments_batched", "batch_size": batch_size}
wav_path = chunk["out_wav_path"]
base_offset_s = float(chunk.get("abs_start_ms", 0)) / 1000.0
# Step 2: Transcribe full audio once
transcription_results, detected_language = self.transcribe_full_audio(
wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s, clip_timestamps=None, model_name=model_name, transcribe_options=transcribe_options
)
# Step 6: Return results
result = {
"chunk_idx": chunk["chunk_idx"],
"channel": chunk["channel"],
"job_id": pre_meta["job_id"],
"segments": transcription_results,
"language": detected_language,
"batch_size": batch_size,
}
# job_id = pre_meta["job_id"]
# task_id = pre_meta["chunk_idx"]
filekey = pre_meta["filekey"]#f"ai-transcribe/split/{job_id}-{task_id}.json"
ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey)
if ret:
return {"filekey": filekey}
else:
return {"error": "Failed to upload to R2"}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Processing failed: {str(e)}"}
finally:
# Clean up preprocessed wav
if pre_meta and pre_meta["segments"]:
for chunk in pre_meta["segments"]:
if chunk.get("out_wav_path") and os.path.exists(chunk["out_wav_path"]):
try:
os.unlink(chunk["out_wav_path"])
except Exception:
pass
@spaces.GPU # each call gets a GPU slice
def process_audio_diarization(self, task_json, num_speakers=0):
"""Process audio for diarization only, returning speaker information.
Args:
task_json: Task JSON containing audio processing information
num_speakers: Number of speakers (0 for auto-detection)
Returns:
str: filekey of uploaded JSON file containing diarization results
"""
if not task_json or not str(task_json).strip():
return {"error": "No JSON provided"}
pre_meta = None
try:
print("Starting diarization-only pipeline...")
# Step 1: Preprocess from task JSON
print("Preprocessing chunk JSON...")
pre_meta = self.preprocess_from_task_json(task_json)
if pre_meta.get("skip"):
# Return minimal result for skipped audio
task = json.loads(task_json)
job_id = task.get("job_id", "job")
task_id = str(task["chunk"]["idx"])
result = {
"num_speakers": 0,
"speaker_embeddings": {}
}
filekey = pre_meta["filekey"]#f"ai-transcribe/split/{job_id}-{task_id}-diarization.json"
ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey)
if ret:
return filekey
else:
return {"error": "Failed to upload to R2"}
wav_path = pre_meta["chunk"]["out_wav_path"]
base_offset_s = float(pre_meta["chunk"].get("abs_start_ms", 0)) / 1000.0
# Step 2: Perform diarization
print("Performing diarization...")
start_time = time.time()
diarization_segments, detected_num_speakers, speaker_embeddings = self.perform_diarization(
wav_path, num_speakers if num_speakers > 0 else None, base_offset_s=base_offset_s
)
diarization_time = time.time() - start_time
print(f"Diarization completed in {diarization_time:.2f} seconds")
# Step 3: Compose JSON response
result = {
"num_speakers": detected_num_speakers,
"speaker_embeddings": speaker_embeddings,
"diarization_segments": diarization_segments,
"idx": pre_meta["chunk"]["chunk_idx"],
"abs_start_ms": pre_meta["chunk"]["abs_start_ms"],
"dur_ms": pre_meta["chunk"]["dur_ms"],
}
if pre_meta.get("channel", None):
result["channel"] = pre_meta["channel"]
# set channel in each diarization segment
for seg in diarization_segments:
seg["channel"] = pre_meta["channel"]
# Step 4: Upload to R2
#job_id = pre_meta["job_id"]
#task_id = pre_meta["chunk_idx"]
#filekey = f"ai-transcribe/split/{job_id}-{task_id}-diarization.json"
filekey = pre_meta["filekey"]
ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey)
if ret:
# Step 5: Return filekey
return {"filekey": filekey}
else:
return {"error": "Failed to upload to R2"}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Diarization processing failed: {str(e)}"}
finally:
# Clean up preprocessed wav
if pre_meta and pre_meta.get("out_wav_path") and os.path.exists(pre_meta["out_wav_path"]):
try:
os.unlink(pre_meta["out_wav_path"])
except Exception:
pass
@spaces.GPU # each call gets a GPU slice
def process_audio(self, task_json, num_speakers=None, language=None,
translate=False, prompt=None, group_segments=True, batch_size=8, model_name: str = DEFAULT_MODEL):
"""Main processing function with diarization using task JSON for a single chunk.
Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription.
"""
if not task_json or not str(task_json).strip():
return {"error": "No JSON provided"}
pre_meta = None
try:
print("Starting new processing pipeline...")
# Step 1: Preprocess per chunk JSON
print("Preprocessing chunk JSON...")
pre_meta = self.preprocess_from_task_json(task_json)
if pre_meta.get("skip"):
return {"segments": [], "language": "unknown", "num_speakers": 0, "transcription_method": "diarized_segments_batched", "batch_size": batch_size}
wav_path = pre_meta["out_wav_path"]
base_offset_s = float(pre_meta.get("abs_start_ms", 0)) / 1000.0
# Step 3: Perform diarization with global offset
diarization_segments, detected_num_speakers, speaker_embeddings = self.perform_diarization(
wav_path, num_speakers, base_offset_s=base_offset_s
)
# Convert diarization_segments to clip_timestamps format
# Format: "start,end,start,end,..." with timestamps relative to the file (subtract base_offset_s)
clip_timestamps_list = []
for seg in diarization_segments:
# Convert global timestamps back to local file timestamps
local_start = max(0.0, float(seg["start"]) - base_offset_s)
local_end = max(local_start, float(seg["end"]) - base_offset_s)
clip_timestamps_list.extend([str(local_start), str(local_end)])
clip_timestamps = ",".join(clip_timestamps_list) if clip_timestamps_list else None
# Step 2: Transcribe full audio once
transcription_results, detected_language = self.transcribe_full_audio(
wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s, clip_timestamps=None, model_name=model_name
)
unmatched_diarization_segments = []
# Step 4: Merge diarization into transcription (assign speakers)
transcription_results, unmatched_diarization_segments = self.assign_speakers_to_transcription(
transcription_results, diarization_segments
)
# Step 4.1: Transcribe diarization-only regions and merge
if unmatched_diarization_segments:
waveform, sample_rate = torchaudio.load(wav_path)
extra_segments = []
for dseg in unmatched_diarization_segments:
d_start = float(dseg["start"]) # global seconds
d_end = float(dseg["end"]) # global seconds
if d_end <= d_start:
continue
# Map global time to local file time
local_start = max(0.0, d_start - float(base_offset_s))
local_end = max(local_start, d_end - float(base_offset_s))
start_sample = max(0, int(local_start * sample_rate))
end_sample = min(waveform.shape[1], int(local_end * sample_rate))
if end_sample <= start_sample:
continue
seg_wav = waveform[:, start_sample:end_sample].contiguous()
tmp_f = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
tmp_path = tmp_f.name
tmp_f.close()
try:
torchaudio.save(tmp_path, seg_wav.cpu(), sample_rate)
seg_transcription, _ = self.transcribe_full_audio(
tmp_path,
language=language if language is not None else None,
translate=translate,
prompt=prompt,
batch_size=batch_size,
base_offset_s=d_start,
model_name=model_name
)
extra_segments.extend(seg_transcription)
finally:
try:
os.unlink(tmp_path)
except Exception:
pass
if extra_segments:
transcription_results.extend(extra_segments)
transcription_results.sort(key=lambda s: float(s.get("start", 0.0)))
# Re-assign speakers on the combined set
transcription_results, _ = self.assign_speakers_to_transcription(
transcription_results, diarization_segments
)
# Step 5: Group segments if requested
if group_segments:
transcription_results = self.group_segments_by_speaker(transcription_results)
# Step 6: Return results
result = {
"segments": transcription_results,
"language": detected_language,
"num_speakers": detected_num_speakers,
"transcription_method": "diarized_segments_batched",
"batch_size": batch_size,
"speaker_embeddings": speaker_embeddings,
}
job_id = pre_meta["job_id"]
task_id = pre_meta["chunk_idx"]
filekey = f"ai-transcribe/split/{job_id}-{task_id}.json"
ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey)
if ret:
return {"filekey": filekey}
else:
return {"error": "Failed to upload to R2"}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Processing failed: {str(e)}"}
finally:
# Clean up preprocessed wav
if pre_meta and pre_meta.get("out_wav_path") and os.path.exists(pre_meta["out_wav_path"]):
try:
os.unlink(pre_meta["out_wav_path"])
except Exception:
pass
# Initialize transcriber
transcriber = WhisperTranscriber()
def format_segments_for_display(result):
"""Format segments for display in Gradio"""
if "error" in result:
return f"β Error: {result['error']}"
segments = result.get("segments", [])
language = result.get("language", "unknown")
num_speakers = result.get("num_speakers", 1)
method = result.get("transcription_method", "unknown")
batch_size = result.get("batch_size", "N/A")
output = f"π― **Detection Results:**\n"
output += f"- Language: {language}\n"
output += f"- Speakers: {num_speakers}\n"
output += f"- Segments: {len(segments)}\n"
output += f"- Method: {method}\n"
output += f"- Batch Size: {batch_size}\n\n"
output += "π **Transcription:**\n\n"
for i, segment in enumerate(segments, 1):
start_time = str(datetime.timedelta(seconds=int(segment["start"])))
end_time = str(datetime.timedelta(seconds=int(segment["end"])))
speaker = segment.get("speaker", "SPEAKER_00")
text = segment["text"]
output += f"**{speaker}** ({start_time} β {end_time})\n"
output += f"{text}\n\n"
return output
@spaces.GPU
def audio_diarization_task(task_json, num_speakers):
"""Gradio interface function"""
result = transcriber.process_audio_diarization(
task_json=task_json,
num_speakers=num_speakers if num_speakers > 0 else 0,
)
#formatted_output = format_segments_for_display(result)
return "OK", result
@spaces.GPU
def audio_transcribe_task(task_json, num_speakers, language, translate, prompt, group_segments, use_diarization, batch_size, model_name):
"""Gradio interface function"""
result = transcriber.process_audio_transcribe(
task_json=task_json,
language=language if language != "auto" else None,
translate=translate,
prompt=prompt if prompt and prompt.strip() else None,
batch_size=batch_size,
model_name=model_name
)
'''
result = transcriber.process_audio_transcribe(
task_json=task_json,
language=language if language != "auto" else None,
translate=translate,
prompt=prompt if prompt and prompt.strip() else None,
batch_size=batch_size,
model_name=model_name
)
'''
#formatted_output = format_segments_for_display(result)
return "OK", result
# Create Gradio interface
demo = gr.Blocks(
title="ποΈ Whisper Transcription with Speaker Diarization",
theme="default"
)
with demo:
gr.Markdown("""
# ποΈ Advanced Audio Transcription & Speaker Diarization
Upload an audio file to get accurate transcription with speaker identification, powered by:
- **Faster-Whisper Large V3 Turbo** with batched inference for optimal performance
- **Pyannote 3.1** for speaker diarization
- **ZeroGPU** acceleration for optimal performance
""")
with gr.Row():
with gr.Column():
task_json_input = gr.Textbox(
label="π§Ύ Paste Task JSON",
placeholder="Paste the per-chunk task JSON here...",
lines=16,
)
with gr.Accordion("βοΈ Advanced Settings", open=False):
model_name_dropdown = gr.Dropdown(
label="Whisper Model",
choices=list(MODELS.keys()),
value=DEFAULT_MODEL,
info="Select the Whisper model to use for transcription."
)
use_diarization = gr.Checkbox(
label="Enable Speaker Diarization",
value=True,
info="Uncheck for faster transcription without speaker identification"
)
batch_size = gr.Slider(
minimum=1,
maximum=128,
value=16,
step=1,
label="Batch Size",
info="Higher values = faster processing but more GPU memory usage. Recommended: 8-24"
)
num_speakers = gr.Slider(
minimum=0,
maximum=20,
value=0,
step=1,
label="Number of Speakers (0 = auto-detect)",
visible=True
)
language = gr.Dropdown(
choices=["auto", "en", "es", "fr", "de", "it", "pt", "ru", "ja", "ko", "zh"],
value="auto",
label="Language"
)
translate = gr.Checkbox(
label="Translate to English",
value=False
)
prompt = gr.Textbox(
label="Vocabulary Prompt (names, acronyms, etc.)",
placeholder="Enter names, technical terms, or context...",
lines=2
)
group_segments = gr.Checkbox(
label="Group segments by speaker/time",
value=True
)
process_btn = gr.Button("π Audio Transcribe Task", variant="primary")
process_btn1 = gr.Button("π Audio Diarization Task", variant="primary")
with gr.Column():
output_text = gr.Markdown(
label="π Transcription Results",
value="Paste task JSON and click 'Transcribe Audio' to get started!"
)
output_json = gr.JSON(
label="π§ Raw Output (JSON)",
visible=False
)
# Update visibility of num_speakers based on diarization toggle
use_diarization.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_diarization],
outputs=[num_speakers]
)
# Event handlers
process_btn.click(
fn=audio_transcribe_task,
inputs=[
task_json_input,
num_speakers,
language,
translate,
prompt,
group_segments,
use_diarization,
batch_size,
model_name_dropdown
],
outputs=[output_text, output_json]
)
process_btn1.click(
fn=audio_diarization_task,
inputs=[
task_json_input,
num_speakers
],
outputs=[output_text, output_json]
)
# Examples
gr.Markdown("### π Usage Tips:")
gr.Markdown("""
- Paste a single-chunk task JSON matching the preprocess schema
- Batch Size: Higher values (16-24) = faster but uses more GPU memory
- Speaker diarization: Enable for speaker identification (slower)
- Languages: Supports 100+ languages with auto-detection
- Vocabulary: Add names and technical terms in the prompt for better accuracy
""")
if __name__ == "__main__":
demo.launch(debug=True)
|