Spaces:
Running
on
Zero
Running
on
Zero
liuyang
commited on
Commit
·
427ce39
1
Parent(s):
888e818
init
Browse files
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Whisper Transcribe
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.35.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Whisper Transcribe
|
3 |
+
emoji: 🎙️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.35.0
|
8 |
app_file: app.py
|
app.py
CHANGED
@@ -1,7 +1,461 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import time
|
7 |
+
import datetime
|
8 |
+
import re
|
9 |
+
import subprocess
|
10 |
+
import os
|
11 |
+
import tempfile
|
12 |
+
import spaces
|
13 |
+
from transformers import pipeline
|
14 |
+
from pyannote.audio import Pipeline
|
15 |
+
import requests
|
16 |
+
import base64
|
17 |
+
from typing import List, Dict, Any, Optional, Tuple
|
18 |
|
19 |
+
# Install flash attention for acceleration
|
20 |
+
try:
|
21 |
+
subprocess.run(
|
22 |
+
"pip install flash-attn --no-build-isolation",
|
23 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
24 |
+
shell=True,
|
25 |
+
check=True
|
26 |
+
)
|
27 |
+
except subprocess.CalledProcessError:
|
28 |
+
print("Warning: Could not install flash-attn, falling back to default attention")
|
29 |
|
30 |
+
class WhisperTranscriber:
|
31 |
+
def __init__(self):
|
32 |
+
self.pipe = None
|
33 |
+
self.diarization_model = None
|
34 |
+
|
35 |
+
@spaces.GPU
|
36 |
+
def setup_models(self):
|
37 |
+
"""Initialize models with GPU acceleration"""
|
38 |
+
if self.pipe is None:
|
39 |
+
print("Loading Whisper model...")
|
40 |
+
self.pipe = pipeline(
|
41 |
+
"automatic-speech-recognition",
|
42 |
+
model="openai/whisper-large-v3-turbo",
|
43 |
+
torch_dtype=torch.float16,
|
44 |
+
device="cuda:0",
|
45 |
+
model_kwargs={"attn_implementation": "flash_attention_2"},
|
46 |
+
return_timestamps=True,
|
47 |
+
)
|
48 |
+
|
49 |
+
if self.diarization_model is None:
|
50 |
+
print("Loading diarization model...")
|
51 |
+
# Note: You'll need to set up authentication for pyannote models
|
52 |
+
# For demo purposes, we'll handle the case where it's not available
|
53 |
+
try:
|
54 |
+
self.diarization_model = Pipeline.from_pretrained(
|
55 |
+
"pyannote/speaker-diarization-3.1",
|
56 |
+
use_auth_token=os.getenv("HF_TOKEN")
|
57 |
+
).to(torch.device("cuda"))
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Could not load diarization model: {e}")
|
60 |
+
self.diarization_model = None
|
61 |
+
|
62 |
+
def convert_audio_format(self, audio_path: str) -> str:
|
63 |
+
"""Convert audio to 16kHz mono WAV format"""
|
64 |
+
temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
65 |
+
temp_wav_path = temp_wav.name
|
66 |
+
temp_wav.close()
|
67 |
+
|
68 |
+
try:
|
69 |
+
subprocess.run([
|
70 |
+
"ffmpeg", "-i", audio_path,
|
71 |
+
"-ar", "16000", "-ac", "1", "-c:a", "pcm_s16le",
|
72 |
+
temp_wav_path, "-y"
|
73 |
+
], check=True, capture_output=True)
|
74 |
+
return temp_wav_path
|
75 |
+
except subprocess.CalledProcessError as e:
|
76 |
+
raise RuntimeError(f"Audio conversion failed: {e}")
|
77 |
+
|
78 |
+
@spaces.GPU
|
79 |
+
def transcribe_audio(
|
80 |
+
self,
|
81 |
+
audio_path: str,
|
82 |
+
language: Optional[str] = None,
|
83 |
+
translate: bool = False,
|
84 |
+
prompt: Optional[str] = None
|
85 |
+
) -> Tuple[List[Dict], str]:
|
86 |
+
"""Transcribe audio using Whisper with flash attention"""
|
87 |
+
if self.pipe is None:
|
88 |
+
self.setup_models()
|
89 |
+
|
90 |
+
print("Starting transcription...")
|
91 |
+
start_time = time.time()
|
92 |
+
|
93 |
+
# Prepare generation kwargs
|
94 |
+
generate_kwargs = {}
|
95 |
+
if language:
|
96 |
+
generate_kwargs["language"] = language
|
97 |
+
if translate:
|
98 |
+
generate_kwargs["task"] = "translate"
|
99 |
+
if prompt:
|
100 |
+
generate_kwargs["prompt_ids"] = self.pipe.tokenizer.encode(prompt)
|
101 |
+
|
102 |
+
# Transcribe with timestamps
|
103 |
+
result = self.pipe(
|
104 |
+
audio_path,
|
105 |
+
return_timestamps=True,
|
106 |
+
generate_kwargs=generate_kwargs
|
107 |
+
)
|
108 |
+
|
109 |
+
# Extract segments and detected language
|
110 |
+
segments = []
|
111 |
+
if "chunks" in result:
|
112 |
+
for chunk in result["chunks"]:
|
113 |
+
segment = {
|
114 |
+
"start": float(chunk["timestamp"][0] or 0),
|
115 |
+
"end": float(chunk["timestamp"][1] or 0),
|
116 |
+
"text": chunk["text"].strip(),
|
117 |
+
}
|
118 |
+
segments.append(segment)
|
119 |
+
else:
|
120 |
+
# Fallback for different result format
|
121 |
+
segments = [{
|
122 |
+
"start": 0.0,
|
123 |
+
"end": 0.0,
|
124 |
+
"text": result["text"]
|
125 |
+
}]
|
126 |
+
|
127 |
+
detected_language = getattr(result, 'language', language or 'unknown')
|
128 |
+
|
129 |
+
transcription_time = time.time() - start_time
|
130 |
+
print(f"Transcription completed in {transcription_time:.2f} seconds")
|
131 |
+
|
132 |
+
return segments, detected_language
|
133 |
+
|
134 |
+
@spaces.GPU
|
135 |
+
def perform_diarization(
|
136 |
+
self,
|
137 |
+
audio_path: str,
|
138 |
+
num_speakers: Optional[int] = None
|
139 |
+
) -> Tuple[List[Dict], int]:
|
140 |
+
"""Perform speaker diarization"""
|
141 |
+
if self.diarization_model is None:
|
142 |
+
print("Diarization model not available, assigning single speaker")
|
143 |
+
return [], 1
|
144 |
+
|
145 |
+
print("Starting diarization...")
|
146 |
+
start_time = time.time()
|
147 |
+
|
148 |
+
# Load audio for diarization
|
149 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
150 |
+
|
151 |
+
# Perform diarization
|
152 |
+
diarization = self.diarization_model(
|
153 |
+
{"waveform": waveform, "sample_rate": sample_rate},
|
154 |
+
num_speakers=num_speakers,
|
155 |
+
)
|
156 |
+
|
157 |
+
# Convert to list format
|
158 |
+
diarize_segments = []
|
159 |
+
diarization_list = list(diarization.itertracks(yield_label=True))
|
160 |
+
|
161 |
+
for turn, _, speaker in diarization_list:
|
162 |
+
diarize_segments.append({
|
163 |
+
"start": turn.start,
|
164 |
+
"end": turn.end,
|
165 |
+
"speaker": speaker
|
166 |
+
})
|
167 |
+
|
168 |
+
unique_speakers = {speaker for _, _, speaker in diarization_list}
|
169 |
+
detected_num_speakers = len(unique_speakers)
|
170 |
+
|
171 |
+
diarization_time = time.time() - start_time
|
172 |
+
print(f"Diarization completed in {diarization_time:.2f} seconds")
|
173 |
+
|
174 |
+
return diarize_segments, detected_num_speakers
|
175 |
+
|
176 |
+
def merge_transcription_and_diarization(
|
177 |
+
self,
|
178 |
+
transcription_segments: List[Dict],
|
179 |
+
diarization_segments: List[Dict]
|
180 |
+
) -> List[Dict]:
|
181 |
+
"""Merge transcription segments with speaker information"""
|
182 |
+
if not diarization_segments:
|
183 |
+
# No diarization available, assign single speaker
|
184 |
+
for segment in transcription_segments:
|
185 |
+
segment["speaker"] = "SPEAKER_00"
|
186 |
+
return transcription_segments
|
187 |
+
|
188 |
+
print("Merging transcription and diarization...")
|
189 |
+
diarize_df = pd.DataFrame(diarization_segments)
|
190 |
+
|
191 |
+
final_segments = []
|
192 |
+
for segment in transcription_segments:
|
193 |
+
# Calculate intersection with diarization segments
|
194 |
+
diarize_df["intersection"] = np.maximum(0,
|
195 |
+
np.minimum(diarize_df["end"], segment["end"]) -
|
196 |
+
np.maximum(diarize_df["start"], segment["start"])
|
197 |
+
)
|
198 |
+
|
199 |
+
# Find speaker with maximum intersection
|
200 |
+
dia_tmp = diarize_df[diarize_df["intersection"] > 0]
|
201 |
+
if len(dia_tmp) > 0:
|
202 |
+
speaker = (
|
203 |
+
dia_tmp.groupby("speaker")["intersection"]
|
204 |
+
.sum()
|
205 |
+
.sort_values(ascending=False)
|
206 |
+
.index[0]
|
207 |
+
)
|
208 |
+
else:
|
209 |
+
speaker = "SPEAKER_00"
|
210 |
+
|
211 |
+
segment["speaker"] = speaker
|
212 |
+
segment["duration"] = segment["end"] - segment["start"]
|
213 |
+
final_segments.append(segment)
|
214 |
+
|
215 |
+
return final_segments
|
216 |
+
|
217 |
+
def group_segments_by_speaker(
|
218 |
+
self,
|
219 |
+
segments: List[Dict],
|
220 |
+
max_gap: float = 1.0,
|
221 |
+
max_duration: float = 30.0
|
222 |
+
) -> List[Dict]:
|
223 |
+
"""Group consecutive segments from the same speaker"""
|
224 |
+
if not segments:
|
225 |
+
return segments
|
226 |
+
|
227 |
+
grouped_segments = []
|
228 |
+
current_group = segments[0].copy()
|
229 |
+
sentence_end_pattern = r"[.!?]+\s*$"
|
230 |
+
|
231 |
+
for segment in segments[1:]:
|
232 |
+
time_gap = segment["start"] - current_group["end"]
|
233 |
+
current_duration = current_group["end"] - current_group["start"]
|
234 |
+
|
235 |
+
# Conditions for combining segments
|
236 |
+
can_combine = (
|
237 |
+
segment["speaker"] == current_group["speaker"] and
|
238 |
+
time_gap <= max_gap and
|
239 |
+
current_duration < max_duration and
|
240 |
+
not re.search(sentence_end_pattern, current_group["text"])
|
241 |
+
)
|
242 |
+
|
243 |
+
if can_combine:
|
244 |
+
# Merge segments
|
245 |
+
current_group["end"] = segment["end"]
|
246 |
+
current_group["text"] += " " + segment["text"]
|
247 |
+
current_group["duration"] = current_group["end"] - current_group["start"]
|
248 |
+
else:
|
249 |
+
# Start new group
|
250 |
+
grouped_segments.append(current_group)
|
251 |
+
current_group = segment.copy()
|
252 |
+
|
253 |
+
grouped_segments.append(current_group)
|
254 |
+
|
255 |
+
# Clean up text
|
256 |
+
for segment in grouped_segments:
|
257 |
+
segment["text"] = re.sub(r"\s+", " ", segment["text"]).strip()
|
258 |
+
segment["text"] = re.sub(r"\s+([.,!?])", r"\1", segment["text"])
|
259 |
+
|
260 |
+
return grouped_segments
|
261 |
+
|
262 |
+
@spaces.GPU
|
263 |
+
def process_audio(
|
264 |
+
self,
|
265 |
+
audio_file,
|
266 |
+
num_speakers: Optional[int] = None,
|
267 |
+
language: Optional[str] = None,
|
268 |
+
translate: bool = False,
|
269 |
+
prompt: Optional[str] = None,
|
270 |
+
group_segments: bool = True
|
271 |
+
) -> Dict[str, Any]:
|
272 |
+
"""Main processing function"""
|
273 |
+
if audio_file is None:
|
274 |
+
return {"error": "No audio file provided"}
|
275 |
+
|
276 |
+
try:
|
277 |
+
# Setup models if not already done
|
278 |
+
self.setup_models()
|
279 |
+
|
280 |
+
# Convert audio format
|
281 |
+
wav_path = self.convert_audio_format(audio_file)
|
282 |
+
|
283 |
+
try:
|
284 |
+
# Transcribe audio
|
285 |
+
transcription_segments, detected_language = self.transcribe_audio(
|
286 |
+
wav_path, language, translate, prompt
|
287 |
+
)
|
288 |
+
|
289 |
+
# Perform diarization
|
290 |
+
diarization_segments, detected_num_speakers = self.perform_diarization(
|
291 |
+
wav_path, num_speakers
|
292 |
+
)
|
293 |
+
|
294 |
+
# Merge transcription and diarization
|
295 |
+
final_segments = self.merge_transcription_and_diarization(
|
296 |
+
transcription_segments, diarization_segments
|
297 |
+
)
|
298 |
+
|
299 |
+
# Group segments if requested
|
300 |
+
if group_segments:
|
301 |
+
final_segments = self.group_segments_by_speaker(final_segments)
|
302 |
+
|
303 |
+
return {
|
304 |
+
"segments": final_segments,
|
305 |
+
"language": detected_language,
|
306 |
+
"num_speakers": detected_num_speakers or 1,
|
307 |
+
"total_segments": len(final_segments)
|
308 |
+
}
|
309 |
+
|
310 |
+
finally:
|
311 |
+
# Clean up temporary file
|
312 |
+
if os.path.exists(wav_path):
|
313 |
+
os.unlink(wav_path)
|
314 |
+
|
315 |
+
except Exception as e:
|
316 |
+
return {"error": f"Processing failed: {str(e)}"}
|
317 |
+
|
318 |
+
# Initialize transcriber
|
319 |
+
transcriber = WhisperTranscriber()
|
320 |
+
|
321 |
+
def format_segments_for_display(result: Dict[str, Any]) -> str:
|
322 |
+
"""Format segments for display in Gradio"""
|
323 |
+
if "error" in result:
|
324 |
+
return f"❌ Error: {result['error']}"
|
325 |
+
|
326 |
+
segments = result.get("segments", [])
|
327 |
+
language = result.get("language", "unknown")
|
328 |
+
num_speakers = result.get("num_speakers", 1)
|
329 |
+
|
330 |
+
output = f"🎯 **Detection Results:**\n"
|
331 |
+
output += f"- Language: {language}\n"
|
332 |
+
output += f"- Speakers: {num_speakers}\n"
|
333 |
+
output += f"- Segments: {len(segments)}\n\n"
|
334 |
+
|
335 |
+
output += "📝 **Transcription:**\n\n"
|
336 |
+
|
337 |
+
for i, segment in enumerate(segments, 1):
|
338 |
+
start_time = str(datetime.timedelta(seconds=int(segment["start"])))
|
339 |
+
end_time = str(datetime.timedelta(seconds=int(segment["end"])))
|
340 |
+
speaker = segment.get("speaker", "SPEAKER_00")
|
341 |
+
text = segment["text"]
|
342 |
+
|
343 |
+
output += f"**{speaker}** ({start_time} → {end_time})\n"
|
344 |
+
output += f"{text}\n\n"
|
345 |
+
|
346 |
+
return output
|
347 |
+
|
348 |
+
def process_audio_gradio(
|
349 |
+
audio_file,
|
350 |
+
num_speakers,
|
351 |
+
language,
|
352 |
+
translate,
|
353 |
+
prompt,
|
354 |
+
group_segments
|
355 |
+
):
|
356 |
+
"""Gradio interface function"""
|
357 |
+
result = transcriber.process_audio(
|
358 |
+
audio_file=audio_file,
|
359 |
+
num_speakers=num_speakers if num_speakers > 0 else None,
|
360 |
+
language=language if language != "auto" else None,
|
361 |
+
translate=translate,
|
362 |
+
prompt=prompt if prompt.strip() else None,
|
363 |
+
group_segments=group_segments
|
364 |
+
)
|
365 |
+
|
366 |
+
formatted_output = format_segments_for_display(result)
|
367 |
+
return formatted_output, result
|
368 |
+
|
369 |
+
# Create Gradio interface
|
370 |
+
with gr.Blocks(
|
371 |
+
title="🎙️ Whisper Transcription with Speaker Diarization",
|
372 |
+
theme=gr.themes.Soft()
|
373 |
+
) as demo:
|
374 |
+
gr.Markdown("""
|
375 |
+
# 🎙️ Advanced Audio Transcription & Speaker Diarization
|
376 |
+
|
377 |
+
Upload an audio file to get accurate transcription with speaker identification, powered by:
|
378 |
+
- **Whisper Large V3 Turbo** with Flash Attention for fast transcription
|
379 |
+
- **Pyannote 3.1** for speaker diarization
|
380 |
+
- **ZeroGPU** acceleration for optimal performance
|
381 |
+
""")
|
382 |
+
|
383 |
+
with gr.Row():
|
384 |
+
with gr.Column():
|
385 |
+
audio_input = gr.Audio(
|
386 |
+
label="🎵 Upload Audio File",
|
387 |
+
type="filepath",
|
388 |
+
sources=["upload", "microphone"]
|
389 |
+
)
|
390 |
+
|
391 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
392 |
+
num_speakers = gr.Slider(
|
393 |
+
minimum=0,
|
394 |
+
maximum=20,
|
395 |
+
value=0,
|
396 |
+
step=1,
|
397 |
+
label="Number of Speakers (0 = auto-detect)"
|
398 |
+
)
|
399 |
+
|
400 |
+
language = gr.Dropdown(
|
401 |
+
choices=["auto", "en", "es", "fr", "de", "it", "pt", "ru", "ja", "ko", "zh"],
|
402 |
+
value="auto",
|
403 |
+
label="Language"
|
404 |
+
)
|
405 |
+
|
406 |
+
translate = gr.Checkbox(
|
407 |
+
label="Translate to English",
|
408 |
+
value=False
|
409 |
+
)
|
410 |
+
|
411 |
+
prompt = gr.Textbox(
|
412 |
+
label="Vocabulary Prompt (names, acronyms, etc.)",
|
413 |
+
placeholder="Enter names, technical terms, or context...",
|
414 |
+
lines=2
|
415 |
+
)
|
416 |
+
|
417 |
+
group_segments = gr.Checkbox(
|
418 |
+
label="Group segments by speaker",
|
419 |
+
value=True
|
420 |
+
)
|
421 |
+
|
422 |
+
process_btn = gr.Button("🚀 Transcribe Audio", variant="primary", size="lg")
|
423 |
+
|
424 |
+
with gr.Column():
|
425 |
+
output_text = gr.Markdown(
|
426 |
+
label="📝 Transcription Results",
|
427 |
+
value="Upload an audio file and click 'Transcribe Audio' to get started!"
|
428 |
+
)
|
429 |
+
|
430 |
+
output_json = gr.JSON(
|
431 |
+
label="🔧 Raw Output (JSON)",
|
432 |
+
visible=False
|
433 |
+
)
|
434 |
+
|
435 |
+
# Event handlers
|
436 |
+
process_btn.click(
|
437 |
+
fn=process_audio_gradio,
|
438 |
+
inputs=[
|
439 |
+
audio_input,
|
440 |
+
num_speakers,
|
441 |
+
language,
|
442 |
+
translate,
|
443 |
+
prompt,
|
444 |
+
group_segments
|
445 |
+
],
|
446 |
+
outputs=[output_text, output_json],
|
447 |
+
show_progress=True
|
448 |
+
)
|
449 |
+
|
450 |
+
# Examples
|
451 |
+
gr.Markdown("### 📋 Usage Tips:")
|
452 |
+
gr.Markdown("""
|
453 |
+
- **Supported formats**: MP3, WAV, M4A, FLAC, OGG, and more
|
454 |
+
- **Max duration**: Recommended under 10 minutes for optimal performance
|
455 |
+
- **Speaker detection**: Works best with clear, distinct voices
|
456 |
+
- **Languages**: Supports 100+ languages with auto-detection
|
457 |
+
- **Vocabulary**: Add names and technical terms in the prompt for better accuracy
|
458 |
+
""")
|
459 |
+
|
460 |
+
if __name__ == "__main__":
|
461 |
+
demo.launch(debug=True)
|
config.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Configuration settings for the Whisper Transcription Space
|
2 |
+
|
3 |
+
# Model configurations
|
4 |
+
WHISPER_MODEL = "openai/whisper-large-v3-turbo"
|
5 |
+
DIARIZATION_MODEL = "pyannote/speaker-diarization-3.1"
|
6 |
+
|
7 |
+
# Audio processing settings
|
8 |
+
AUDIO_SAMPLE_RATE = 16000
|
9 |
+
AUDIO_CHANNELS = 1
|
10 |
+
MAX_AUDIO_DURATION = 600 # 10 minutes in seconds
|
11 |
+
|
12 |
+
# Transcription settings
|
13 |
+
DEFAULT_BEAM_SIZE = 5
|
14 |
+
DEFAULT_LANGUAGE = None # Auto-detect
|
15 |
+
DEFAULT_TRANSLATE = False
|
16 |
+
|
17 |
+
# Diarization settings
|
18 |
+
MAX_SPEAKERS = 20
|
19 |
+
DEFAULT_NUM_SPEAKERS = None # Auto-detect
|
20 |
+
|
21 |
+
# Segment grouping settings
|
22 |
+
MAX_SEGMENT_GAP = 1.0 # seconds
|
23 |
+
MAX_SEGMENT_DURATION = 30.0 # seconds
|
24 |
+
|
25 |
+
# Flash attention settings
|
26 |
+
FLASH_ATTENTION_ENABLED = True
|
27 |
+
TORCH_DTYPE = "float16"
|
28 |
+
|
29 |
+
# ZeroGPU settings
|
30 |
+
GPU_MEMORY_FRACTION = 0.8
|
31 |
+
CUDA_DEVICE = "cuda:0"
|
32 |
+
|
33 |
+
# Gradio interface settings
|
34 |
+
GRADIO_THEME = "soft"
|
35 |
+
GRADIO_DEBUG = False
|
36 |
+
GRADIO_SHARE = False
|
37 |
+
|
38 |
+
# Environment variables
|
39 |
+
HF_TOKEN_ENV_VAR = "HF_TOKEN"
|
40 |
+
|
41 |
+
# Supported audio formats
|
42 |
+
SUPPORTED_AUDIO_FORMATS = [
|
43 |
+
".mp3", ".wav", ".m4a", ".flac", ".ogg",
|
44 |
+
".aac", ".wma", ".opus", ".webm"
|
45 |
+
]
|
46 |
+
|
47 |
+
# Language codes
|
48 |
+
SUPPORTED_LANGUAGES = {
|
49 |
+
"auto": "Auto-detect",
|
50 |
+
"en": "English",
|
51 |
+
"es": "Spanish",
|
52 |
+
"fr": "French",
|
53 |
+
"de": "German",
|
54 |
+
"it": "Italian",
|
55 |
+
"pt": "Portuguese",
|
56 |
+
"ru": "Russian",
|
57 |
+
"ja": "Japanese",
|
58 |
+
"ko": "Korean",
|
59 |
+
"zh": "Chinese",
|
60 |
+
"ar": "Arabic",
|
61 |
+
"hi": "Hindi",
|
62 |
+
"tr": "Turkish",
|
63 |
+
"pl": "Polish",
|
64 |
+
"nl": "Dutch",
|
65 |
+
"sv": "Swedish",
|
66 |
+
"da": "Danish",
|
67 |
+
"no": "Norwegian",
|
68 |
+
"fi": "Finnish"
|
69 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core ML libraries
|
2 |
+
torch>=2.0.0
|
3 |
+
torchaudio>=2.0.0
|
4 |
+
transformers>=4.35.0
|
5 |
+
accelerate>=0.24.0
|
6 |
+
|
7 |
+
# Gradio and Spaces
|
8 |
+
gradio>=4.0.0
|
9 |
+
spaces>=0.19.0
|
10 |
+
|
11 |
+
# Audio processing and transcription
|
12 |
+
ffmpeg-python>=0.2.0
|
13 |
+
librosa>=0.10.0
|
14 |
+
soundfile>=0.12.0
|
15 |
+
|
16 |
+
# Speaker diarization
|
17 |
+
pyannote.audio>=3.1.0
|
18 |
+
pyannote.core>=5.0.0
|
19 |
+
pyannote.database>=5.0.0
|
20 |
+
pyannote.metrics>=3.2.0
|
21 |
+
|
22 |
+
# Data processing
|
23 |
+
pandas>=1.5.0
|
24 |
+
numpy>=1.24.0
|
25 |
+
|
26 |
+
# Utility libraries
|
27 |
+
requests>=2.28.0
|
28 |
+
typing-extensions>=4.5.0
|
29 |
+
|
30 |
+
# Flash attention (will be installed at runtime)
|
31 |
+
# flash-attn (installed dynamically in app.py)
|
32 |
+
|
33 |
+
# Additional dependencies for ZeroGPU
|
34 |
+
huggingface_hub>=0.16.0
|