Spaces:
Running
Running
import gradio as gr | |
import joblib | |
import numpy as np | |
import pandas as pd | |
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC | |
from sklearn.preprocessing import MinMaxScaler | |
# Load model and scaler | |
model = joblib.load("RF.joblib") | |
scaler = joblib.load("norm (4).joblib") | |
# Feature list (KEEP THIS CONSISTENT) | |
selected_features = [ | |
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1", | |
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", | |
"_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001", | |
"_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001", | |
"_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001", | |
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", | |
"_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", | |
"_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001", | |
"_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025", | |
"A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V", | |
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", | |
"HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA", | |
"MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV", | |
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4", | |
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26", | |
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29", | |
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26", | |
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", | |
"GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24", | |
"GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28", | |
"GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", | |
"GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21", | |
"GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24", | |
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", | |
"GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", | |
"GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18", | |
"GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28", | |
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25", | |
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", | |
"GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", | |
"APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19", | |
"APAAC24" | |
] | |
def extract_features(sequence): | |
all_features_dict = {} | |
# Calculate all dipeptide features | |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence) | |
# Add only the first 420 features to the dictionary | |
first_420_keys = list(dipeptide_features.keys())[:420] # Get the first 420 keys | |
filtered_dipeptide_features = {key: dipeptide_features[key] for key in first_420_keys} | |
ctd_features = CTD.CalculateCTD(sequence) | |
auto_features = Autocorrelation.CalculateAutoTotal(sequence) | |
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9) | |
all_features_dict.update(ctd_features) | |
all_features_dict.update(filtered_dipeptide_features) | |
all_features_dict.update(auto_features) | |
all_features_dict.update(pseudo_features) | |
# Convert all features to DataFrame | |
feature_df_all = pd.DataFrame([all_features_dict]) | |
# Normalize ALL features | |
normalized_feature_array = scaler.transform(feature_df_all.values) # Normalize the numpy array | |
normalized_feature_df = pd.DataFrame(normalized_feature_array, columns=feature_df_all.columns) # Convert back to DataFrame with original column names | |
# Select features AFTER normalization | |
feature_df_selected = normalized_feature_df[selected_features].copy() | |
feature_df_selected = feature_df_selected.fillna(0) # Fill missing if any after selection (though unlikely now) | |
feature_array = feature_df_selected.values | |
return feature_array | |
def predict(sequence): | |
"""Predicts whether the input sequence is an AMP.""" | |
features = extract_features(sequence) | |
if isinstance(features, str) and features.startswith("Error:"): | |
return features | |
prediction = model.predict(features)[0] | |
probabilities = model.predict_proba(features)[0] | |
if prediction == 0: | |
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)" | |
else: | |
return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP" | |
# Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(label="Enter Protein Sequence"), | |
outputs=gr.Label(label="Prediction"), | |
title="AMP Classifier", | |
description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP." | |
) | |
iface.launch(share=True) |