File size: 5,328 Bytes
85c36de
942bf87
51a3749
ea9a1bf
e199881
51a3749
 
248a61c
e199881
8bc43cc
942bf87
248a61c
 
e199881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e1095
dc9275e
3b84715
c63f76d
aa6838a
4d0770a
9eb7a80
c63f76d
9eb7a80
 
 
 
bee2eef
aa6838a
bee2eef
c63f76d
8319384
bee2eef
 
8319384
c63f76d
f3b700a
 
4d0770a
f3b700a
 
 
c63f76d
f3b700a
 
 
 
7d97f16
 
f3b700a
c63f76d
9748994
85c36de
248a61c
9f51e97
7d97f16
 
81bcfb3
fb0b33c
 
c9a939f
81bcfb3
 
 
 
 
248a61c
85c36de
 
 
 
 
248a61c
85c36de
 
81bcfb3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler

# Load model and scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")

# Feature list (KEEP THIS CONSISTENT)
selected_features = [
    "_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
    "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
    "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
    "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
    "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
    "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
    "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
    "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
    "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
    "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
    "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
    "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
    "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
    "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
    "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
    "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
    "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
    "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
    "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
    "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
    "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
    "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
    "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
    "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
    "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
    "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
    "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
    "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
    "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
    "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
    "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
    "APAAC24"
]

def extract_features(sequence):

    all_features_dict = {}

      # Calculate all dipeptide features
    dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
    
    # Add only the first 420 features to the dictionary
    first_420_keys = list(dipeptide_features.keys())[:420]  # Get the first 420 keys
    filtered_dipeptide_features = {key: dipeptide_features[key] for key in first_420_keys}
    ctd_features = CTD.CalculateCTD(sequence)
    auto_features = Autocorrelation.CalculateAutoTotal(sequence)
    pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)

    all_features_dict.update(ctd_features)
    all_features_dict.update(filtered_dipeptide_features)
    all_features_dict.update(auto_features)
    all_features_dict.update(pseudo_features)

    # Convert all features to DataFrame
    feature_df_all = pd.DataFrame([all_features_dict])

    # Normalize ALL features
    normalized_feature_array = scaler.transform(feature_df_all.values) # Normalize the numpy array
    normalized_feature_df = pd.DataFrame(normalized_feature_array, columns=feature_df_all.columns) # Convert back to DataFrame with original column names

    # Select features AFTER normalization
    feature_df_selected = normalized_feature_df[selected_features].copy()
    feature_df_selected = feature_df_selected.fillna(0) # Fill missing if any after selection (though unlikely now)
    feature_array = feature_df_selected.values


    return feature_array


def predict(sequence):
    """Predicts whether the input sequence is an AMP."""
    features = extract_features(sequence)
    if isinstance(features, str) and features.startswith("Error:"):
        return features

    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]

    if prediction == 0:
        return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
    else:
        return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"

# Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Textbox(label="Enter Protein Sequence"),
    outputs=gr.Label(label="Prediction"),
    title="AMP Classifier",
    description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP."
)

iface.launch(share=True)