Spaces:
Running
Running
File size: 8,192 Bytes
85c36de 942bf87 51a3749 ea9a1bf e199881 51a3749 f0f9b27 f776418 f0f9b27 febb4a6 63d3a19 44f5cf9 942bf87 63d3a19 44f5cf9 f0f9b27 b206439 abf6b8c b206439 44f5cf9 f776418 63d3a19 f776418 b206439 44f5cf9 63d3a19 44f5cf9 63d3a19 b206439 44f5cf9 63d3a19 44f5cf9 63d3a19 b206439 44f5cf9 63d3a19 b206439 63d3a19 44f5cf9 b206439 44f5cf9 63d3a19 44f5cf9 68ded6f 63d3a19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
import torch
from transformers import BertTokenizer, BertModel
from lime.lime_tabular import LimeTabularExplainer
from math import expm1
# Load AMP Classifier and Scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")
# Load ProtBert
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
protbert_model = protbert_model.to(device).eval()
# Define selected features (put your complete list here)
selected_features = ["_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", "_PolarizabilityD2001",
"_PolarizabilityD3001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001",
"_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050",
"_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025",
"_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001",
"_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE",
"LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30",
"GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25",
"GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29",
"GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30",
"GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25",
"GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30",
"GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29",
"GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13",
"APAAC15", "APAAC18", "APAAC19", "APAAC24"]
# Dummy data for LIME
sample_data = np.random.rand(100, len(selected_features))
explainer = LimeTabularExplainer(
training_data=sample_data,
feature_names=selected_features,
class_names=["AMP", "Non-AMP"],
mode="classification"
)
# Feature extraction function
def extract_features(sequence):
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
if len(sequence) < 10:
return "Error: Sequence too short."
try:
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
filtered_dipeptide_features = {k: dipeptide_features[k] for k in list(dipeptide_features.keys())[:420]}
ctd_features = CTD.CalculateCTD(sequence)
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
all_features_dict = {}
all_features_dict.update(ctd_features)
all_features_dict.update(filtered_dipeptide_features)
all_features_dict.update(auto_features)
all_features_dict.update(pseudo_features)
feature_df_all = pd.DataFrame([all_features_dict])
normalized_array = scaler.transform(feature_df_all.values)
normalized_df = pd.DataFrame(normalized_array, columns=feature_df_all.columns)
if not set(selected_features).issubset(normalized_df.columns):
return "Error: Some selected features are missing."
selected_df = normalized_df[selected_features].fillna(0)
return selected_df.values
except Exception as e:
return f"Error in feature extraction: {str(e)}"
# MIC prediction function
def predictmic(sequence):
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
if len(sequence) < 10:
return {"Error": "Sequence too short or invalid."}
seq_spaced = ' '.join(list(sequence))
tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
tokens = {k: v.to(device) for k, v in tokens.items()}
with torch.no_grad():
outputs = protbert_model(**tokens)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)
bacteria_config = {
"E.coli": {"model": "coli_xgboost_model.pkl", "scaler": "coli_scaler.pkl", "pca": None},
"S.aureus": {"model": "aur_xgboost_model.pkl", "scaler": "aur_scaler.pkl", "pca": None},
"P.aeruginosa": {"model": "arg_xgboost_model.pkl", "scaler": "arg_scaler.pkl", "pca": None},
"K.Pneumonia": {"model": "pne_mlp_model.pkl", "scaler": "pne_scaler.pkl", "pca": "pne_pca.pkl"}
}
mic_results = {}
for bacterium, cfg in bacteria_config.items():
try:
scaler = joblib.load(cfg["scaler"])
scaled = scaler.transform(embedding)
transformed = joblib.load(cfg["pca"]).transform(scaled) if cfg["pca"] else scaled
model = joblib.load(cfg["model"])
mic_log = model.predict(transformed)[0]
mic = round(expm1(mic_log), 3)
mic_results[bacterium] = mic
except Exception as e:
mic_results[bacterium] = f"Error: {str(e)}"
return mic_results
# Main prediction function
def full_prediction(sequence):
features = extract_features(sequence)
if isinstance(features, str):
return features
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
try:
class_index = list(model.classes_).index(prediction)
confidence = round(probabilities[class_index] * 100, 2)
except Exception:
confidence = "Unknown"
amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
result = f"Prediction: {amp_result}\nConfidence: {confidence}%\n"
if prediction == 0:
mic_values = predictmic(sequence)
result += "\nPredicted MIC Values (μM):\n"
for org, mic in mic_values.items():
result += f"- {org}: {mic}\n"
else:
result += "\nMIC prediction skipped for Non-AMP sequences.\n"
explanation = explainer.explain_instance(
data_row=features[0],
predict_fn=model.predict_proba,
num_features=10
)
result += "\nTop Features Influencing Prediction:\n"
for feat, weight in explanation.as_list():
result += f"- {feat}: {round(weight, 4)}\n"
return result
# Gradio UI
iface = gr.Interface(
fn=full_prediction,
inputs=gr.Textbox(label="Enter Protein Sequence"),
outputs=gr.Textbox(label="Results"),
title="AMP & MIC Predictor + LIME Explanation",
description="Paste an amino acid sequence (≥10 characters). Get AMP classification, MIC predictions, and LIME interpretability insights."
)
iface.launch(share=True)
|