File size: 8,192 Bytes
85c36de
942bf87
51a3749
ea9a1bf
e199881
51a3749
f0f9b27
 
f776418
f0f9b27
febb4a6
63d3a19
44f5cf9
 
942bf87
63d3a19
44f5cf9
 
 
 
f0f9b27
b206439
abf6b8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b206439
 
44f5cf9
f776418
63d3a19
 
 
 
f776418
 
b206439
44f5cf9
63d3a19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f5cf9
63d3a19
 
 
 
 
 
 
 
 
 
 
 
b206439
44f5cf9
63d3a19
 
 
 
 
 
 
 
 
 
 
44f5cf9
63d3a19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b206439
44f5cf9
63d3a19
 
 
 
 
 
 
b206439
 
 
 
 
 
 
63d3a19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f5cf9
b206439
44f5cf9
63d3a19
 
 
 
 
44f5cf9
68ded6f
63d3a19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
import torch
from transformers import BertTokenizer, BertModel
from lime.lime_tabular import LimeTabularExplainer
from math import expm1

# Load AMP Classifier and Scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")

# Load ProtBert
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
protbert_model = protbert_model.to(device).eval()

# Define selected features (put your complete list here)
selected_features = ["_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", "_PolarizabilityD2001",
"_PolarizabilityD3001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001",
"_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050",
"_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025",
"_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001",
"_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE",
"LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30",
"GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25",
"GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29",
"GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30",
"GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25",
"GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30",
"GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29",
"GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13",
"APAAC15", "APAAC18", "APAAC19", "APAAC24"]

# Dummy data for LIME
sample_data = np.random.rand(100, len(selected_features))
explainer = LimeTabularExplainer(
    training_data=sample_data,
    feature_names=selected_features,
    class_names=["AMP", "Non-AMP"],
    mode="classification"
)

# Feature extraction function
def extract_features(sequence):
    sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
    if len(sequence) < 10:
        return "Error: Sequence too short."

    try:
        dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
        filtered_dipeptide_features = {k: dipeptide_features[k] for k in list(dipeptide_features.keys())[:420]}
        ctd_features = CTD.CalculateCTD(sequence)
        auto_features = Autocorrelation.CalculateAutoTotal(sequence)
        pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)

        all_features_dict = {}
        all_features_dict.update(ctd_features)
        all_features_dict.update(filtered_dipeptide_features)
        all_features_dict.update(auto_features)
        all_features_dict.update(pseudo_features)

        feature_df_all = pd.DataFrame([all_features_dict])
        normalized_array = scaler.transform(feature_df_all.values)
        normalized_df = pd.DataFrame(normalized_array, columns=feature_df_all.columns)

        if not set(selected_features).issubset(normalized_df.columns):
            return "Error: Some selected features are missing."

        selected_df = normalized_df[selected_features].fillna(0)
        return selected_df.values
    except Exception as e:
        return f"Error in feature extraction: {str(e)}"

# MIC prediction function
def predictmic(sequence):
    sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
    if len(sequence) < 10:
        return {"Error": "Sequence too short or invalid."}

    seq_spaced = ' '.join(list(sequence))
    tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
    tokens = {k: v.to(device) for k, v in tokens.items()}

    with torch.no_grad():
        outputs = protbert_model(**tokens)
        embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)

    bacteria_config = {
        "E.coli": {"model": "coli_xgboost_model.pkl", "scaler": "coli_scaler.pkl", "pca": None},
        "S.aureus": {"model": "aur_xgboost_model.pkl", "scaler": "aur_scaler.pkl", "pca": None},
        "P.aeruginosa": {"model": "arg_xgboost_model.pkl", "scaler": "arg_scaler.pkl", "pca": None},
        "K.Pneumonia": {"model": "pne_mlp_model.pkl", "scaler": "pne_scaler.pkl", "pca": "pne_pca.pkl"}
    }

    mic_results = {}
    for bacterium, cfg in bacteria_config.items():
        try:
            scaler = joblib.load(cfg["scaler"])
            scaled = scaler.transform(embedding)
            transformed = joblib.load(cfg["pca"]).transform(scaled) if cfg["pca"] else scaled
            model = joblib.load(cfg["model"])
            mic_log = model.predict(transformed)[0]
            mic = round(expm1(mic_log), 3)
            mic_results[bacterium] = mic
        except Exception as e:
            mic_results[bacterium] = f"Error: {str(e)}"

    return mic_results

# Main prediction function
def full_prediction(sequence):
    features = extract_features(sequence)
    if isinstance(features, str):
        return features

    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]

    try:
        class_index = list(model.classes_).index(prediction)
        confidence = round(probabilities[class_index] * 100, 2)
    except Exception:
        confidence = "Unknown"

    amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
    result = f"Prediction: {amp_result}\nConfidence: {confidence}%\n"

    if prediction == 0:
        mic_values = predictmic(sequence)
        result += "\nPredicted MIC Values (μM):\n"
        for org, mic in mic_values.items():
            result += f"- {org}: {mic}\n"
    else:
        result += "\nMIC prediction skipped for Non-AMP sequences.\n"

    explanation = explainer.explain_instance(
        data_row=features[0],
        predict_fn=model.predict_proba,
        num_features=10
    )

    result += "\nTop Features Influencing Prediction:\n"
    for feat, weight in explanation.as_list():
        result += f"- {feat}: {round(weight, 4)}\n"

    return result

# Gradio UI
iface = gr.Interface(
    fn=full_prediction,
    inputs=gr.Textbox(label="Enter Protein Sequence"),
    outputs=gr.Textbox(label="Results"),
    title="AMP & MIC Predictor + LIME Explanation",
    description="Paste an amino acid sequence (≥10 characters). Get AMP classification, MIC predictions, and LIME interpretability insights."
)

iface.launch(share=True)