Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -19,35 +19,10 @@ protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
|
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
protbert_model = protbert_model.to(device).eval()
|
21 |
|
22 |
-
# Define selected features
|
23 |
-
selected_features = [
|
24 |
-
|
25 |
-
|
26 |
-
"_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
|
27 |
-
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050",
|
28 |
-
"_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025",
|
29 |
-
"_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001",
|
30 |
-
"_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
|
31 |
-
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE",
|
32 |
-
"LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
|
33 |
-
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
|
34 |
-
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
|
35 |
-
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
|
36 |
-
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
|
37 |
-
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30",
|
38 |
-
"GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25",
|
39 |
-
"GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29",
|
40 |
-
"GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30",
|
41 |
-
"GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
|
42 |
-
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25",
|
43 |
-
"GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30",
|
44 |
-
"GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
|
45 |
-
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
|
46 |
-
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29",
|
47 |
-
"GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13",
|
48 |
-
"APAAC15", "APAAC18", "APAAC19", "APAAC24"]
|
49 |
-
|
50 |
-
# Create dummy data for LIME initialization
|
51 |
sample_data = np.random.rand(100, len(selected_features))
|
52 |
explainer = LimeTabularExplainer(
|
53 |
training_data=sample_data,
|
@@ -56,7 +31,7 @@ explainer = LimeTabularExplainer(
|
|
56 |
mode="classification"
|
57 |
)
|
58 |
|
59 |
-
# Feature extraction
|
60 |
def extract_features(sequence):
|
61 |
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
62 |
if len(sequence) < 10:
|
@@ -87,7 +62,7 @@ def extract_features(sequence):
|
|
87 |
except Exception as e:
|
88 |
return f"Error in feature extraction: {str(e)}"
|
89 |
|
90 |
-
# MIC prediction
|
91 |
def predictmic(sequence):
|
92 |
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
93 |
if len(sequence) < 10:
|
@@ -123,7 +98,7 @@ def predictmic(sequence):
|
|
123 |
|
124 |
return mic_results
|
125 |
|
126 |
-
#
|
127 |
def full_prediction(sequence):
|
128 |
features = extract_features(sequence)
|
129 |
if isinstance(features, str):
|
@@ -131,9 +106,14 @@ def full_prediction(sequence):
|
|
131 |
|
132 |
prediction = model.predict(features)[0]
|
133 |
probabilities = model.predict_proba(features)[0]
|
134 |
-
amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
|
135 |
-
confidence = round(probabilities[prediction] * 100, 2)
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
result = f"Prediction: {amp_result}\nConfidence: {confidence}%\n"
|
138 |
|
139 |
if prediction == 0:
|
@@ -156,7 +136,7 @@ def full_prediction(sequence):
|
|
156 |
|
157 |
return result
|
158 |
|
159 |
-
# Gradio
|
160 |
iface = gr.Interface(
|
161 |
fn=full_prediction,
|
162 |
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
|
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
protbert_model = protbert_model.to(device).eval()
|
21 |
|
22 |
+
# Define selected features (put your complete list here)
|
23 |
+
selected_features = [ ... ] # Replace with your full list
|
24 |
+
|
25 |
+
# Dummy data for LIME
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
sample_data = np.random.rand(100, len(selected_features))
|
27 |
explainer = LimeTabularExplainer(
|
28 |
training_data=sample_data,
|
|
|
31 |
mode="classification"
|
32 |
)
|
33 |
|
34 |
+
# Feature extraction function
|
35 |
def extract_features(sequence):
|
36 |
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
37 |
if len(sequence) < 10:
|
|
|
62 |
except Exception as e:
|
63 |
return f"Error in feature extraction: {str(e)}"
|
64 |
|
65 |
+
# MIC prediction function
|
66 |
def predictmic(sequence):
|
67 |
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
68 |
if len(sequence) < 10:
|
|
|
98 |
|
99 |
return mic_results
|
100 |
|
101 |
+
# Main prediction function
|
102 |
def full_prediction(sequence):
|
103 |
features = extract_features(sequence)
|
104 |
if isinstance(features, str):
|
|
|
106 |
|
107 |
prediction = model.predict(features)[0]
|
108 |
probabilities = model.predict_proba(features)[0]
|
|
|
|
|
109 |
|
110 |
+
try:
|
111 |
+
class_index = list(model.classes_).index(prediction)
|
112 |
+
confidence = round(probabilities[class_index] * 100, 2)
|
113 |
+
except Exception:
|
114 |
+
confidence = "Unknown"
|
115 |
+
|
116 |
+
amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
|
117 |
result = f"Prediction: {amp_result}\nConfidence: {confidence}%\n"
|
118 |
|
119 |
if prediction == 0:
|
|
|
136 |
|
137 |
return result
|
138 |
|
139 |
+
# Gradio UI
|
140 |
iface = gr.Interface(
|
141 |
fn=full_prediction,
|
142 |
inputs=gr.Textbox(label="Enter Protein Sequence"),
|