Gift-Recommender / product_recommender.py
noddysnots's picture
Update product_recommender.py
e9780b1 verified
from typing import Dict, List
import aiohttp
import asyncio
import re
import torch
from sentence_transformers import SentenceTransformer, util
from bs4 import BeautifulSoup
class DynamicRecommender:
def __init__(self):
self.headers = {
'User-Agent': (
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/100.0.4896.75 Safari/537.36'
)
}
# Load SentenceTransformer for embedding-based recommendations
self.model = SentenceTransformer('all-mpnet-base-v2')
# Pre‐define broad candidate categories. Adjust to your needs.
self.candidate_categories = [
"tech gadgets",
"programming books",
"self help books",
"business books",
"leadership novels",
"fashion accessories",
"beauty products",
"board games",
"music instruments",
"cooking utensils",
"cookbooks",
"art and painting supplies", # covers user "art" interest
"home decor",
"pet supplies",
"novels",
"gaming consoles",
"smartphones",
"camera gear",
"toys",
"gift hamper"
]
# Pre‐encode category texts
self.category_embeddings = self.model.encode(self.candidate_categories, convert_to_tensor=True)
# ------------------------------------------------------------------
# Amazon search
# ------------------------------------------------------------------
async def search_amazon(self, query: str) -> List[Dict]:
print(f"Searching Amazon for: {query}")
search_url = f"https://www.amazon.in/s?k={query}"
async with aiohttp.ClientSession() as session:
async with session.get(search_url, headers=self.headers) as response:
if response.status == 200:
html = await response.text()
return self._parse_amazon_results(html)
return []
def _parse_amazon_results(self, html: str) -> List[Dict]:
soup = BeautifulSoup(html, 'html.parser')
products = []
# (Might need to tweak if Amazon changes HTML)
search_items = soup.select('.s-result-item')
for item in search_items:
try:
name_elem = item.select_one('.a-text-normal')
price_elem = item.select_one('.a-price-whole')
link_elem = item.select_one('a.a-link-normal')
if name_elem and price_elem and link_elem:
product_name = name_elem.get_text(strip=True)
product_price = price_elem.get_text(strip=True)
product_url = link_elem.get('href')
products.append({
'name': product_name,
'price': product_price,
'source': 'Amazon',
'url': 'https://www.amazon.in' + product_url,
'description': f"From Amazon: {product_name}"
})
except Exception:
continue
return products[:5]
# ------------------------------------------------------------------
# Flipkart search
# ------------------------------------------------------------------
async def search_flipkart(self, query: str) -> List[Dict]:
print(f"Searching Flipkart for: {query}")
search_url = f"https://www.flipkart.com/search?q={query}"
async with aiohttp.ClientSession() as session:
async with session.get(search_url, headers=self.headers) as response:
if response.status == 200:
html = await response.text()
return self._parse_flipkart_results(html)
return []
def _parse_flipkart_results(self, html: str) -> List[Dict]:
soup = BeautifulSoup(html, 'html.parser')
products = []
# (Might need to tweak if Flipkart changes HTML)
item_cards = soup.select('._1AtVbE')
for item in item_cards:
try:
name_elem = item.select_one('._4rR01T')
price_elem = item.select_one('._30jeq3')
link_elem = item.select_one('a')
if name_elem and price_elem and link_elem:
product_name = name_elem.get_text(strip=True)
product_price = price_elem.get_text(strip=True)
product_url = link_elem.get('href')
products.append({
'name': product_name,
'price': product_price,
'source': 'Flipkart',
'url': 'https://www.flipkart.com' + product_url,
'description': f"From Flipkart: {product_name}"
})
except Exception:
continue
return products[:5]
# ------------------------------------------------------------------
# IGP search
# ------------------------------------------------------------------
async def search_igp(self, query: str) -> List[Dict]:
print(f"Searching IGP for: {query}")
search_url = f"https://www.igp.com/search/{query}"
async with aiohttp.ClientSession() as session:
async with session.get(search_url, headers=self.headers) as response:
if response.status == 200:
html = await response.text()
return self._parse_igp_results(html)
return []
def _parse_igp_results(self, html: str) -> List[Dict]:
soup = BeautifulSoup(html, 'html.parser')
products = []
# (Likely need to tweak if IGP changes HTML)
item_cards = soup.select('.product-item')
for item in item_cards:
try:
name_elem = item.select_one('.product-title')
price_elem = item.select_one('.product-price')
link_elem = item.select_one('a')
if name_elem and price_elem and link_elem:
product_name = name_elem.get_text(strip=True)
product_price = price_elem.get_text(strip=True)
product_url = link_elem.get('href')
products.append({
'name': product_name,
'price': product_price,
'source': 'IGP',
'url': 'https://www.igp.com' + product_url,
'description': f"From IGP: {product_name}"
})
except Exception:
continue
return products[:5]
# ------------------------------------------------------------------
# Embedding-based category extraction
# ------------------------------------------------------------------
def _extract_categories(self, text: str) -> List[str]:
# 1. Check for age with a regex
age_match = re.search(r'age\s+(\d+)', text.lower())
age = age_match.group(1) if age_match else None
# 2. Encode user text
user_emb = self.model.encode(text, convert_to_tensor=True)
# 3. Cosine similarity with candidate categories
sims = util.cos_sim(user_emb, self.category_embeddings)[0]
top_k = min(3, len(self.candidate_categories)) # pick top 3
top_results = torch.topk(sims, k=top_k)
best_categories = []
for idx in top_results.indices:
cat_text = self.candidate_categories[idx]
if age:
cat_text = f"{cat_text} for {age} year old"
best_categories.append(cat_text)
print("Top categories chosen via embeddings:", best_categories)
return best_categories
# ------------------------------------------------------------------
# Main recommendations
# ------------------------------------------------------------------
async def get_recommendations(self, text: str) -> List[Dict]:
"""
Search across Amazon, Flipkart, IGP based on top embedding matches,
then deduplicate, then return final list.
"""
try:
# 1) Get top matching categories from user text
categories = self._extract_categories(text)
# 2) For each category, search across sites
all_products = []
for c in categories:
amazon_products = await self.search_amazon(c)
flipkart_products = await self.search_flipkart(c)
igp_products = await self.search_igp(c)
all_products.extend(amazon_products + flipkart_products + igp_products)
# 3) Deduplicate
seen = set()
unique_products = []
for product in all_products:
if product['name'] not in seen:
seen.add(product['name'])
unique_products.append(product)
return unique_products[:5]
except Exception as e:
print(f"Error in get_recommendations: {str(e)}")
return []