File size: 9,330 Bytes
15c7d5c
 
 
0f58622
cc2fcc8
 
0f58622
8b25124
15c7d5c
dc7e417
15c7d5c
0f58622
 
 
 
 
15c7d5c
e9780b1
15c7d5c
0f58622
e9780b1
cc2fcc8
 
 
 
 
 
 
 
 
 
 
 
e9780b1
cc2fcc8
 
 
 
 
 
 
 
 
e9780b1
cc2fcc8
 
0f58622
 
 
15c7d5c
0f58622
15c7d5c
 
 
 
 
 
 
0f58622
 
 
 
 
e9780b1
0f58622
 
 
 
 
 
 
 
 
 
 
cc2fcc8
0f58622
 
 
 
 
e9780b1
0f58622
 
 
 
 
 
 
 
 
15c7d5c
0f58622
15c7d5c
 
 
 
 
 
 
 
0f58622
15c7d5c
 
e9780b1
 
0f58622
 
 
15c7d5c
0f58622
 
 
 
 
 
 
cc2fcc8
15c7d5c
0f58622
 
 
 
e9780b1
15c7d5c
 
 
0f58622
15c7d5c
 
0f58622
cc2fcc8
0f58622
 
 
 
 
 
 
 
 
 
 
 
15c7d5c
 
0f58622
e9780b1
0f58622
 
 
15c7d5c
0f58622
 
 
 
 
 
 
cc2fcc8
15c7d5c
0f58622
 
 
 
e9780b1
15c7d5c
 
 
0f58622
15c7d5c
 
0f58622
e9780b1
0f58622
e9780b1
 
cc2fcc8
15c7d5c
 
e9780b1
cc2fcc8
0f58622
e9780b1
 
 
cc2fcc8
15c7d5c
cc2fcc8
 
 
 
 
 
0f58622
e9780b1
cc2fcc8
15c7d5c
0f58622
 
 
 
 
e9780b1
 
0f58622
dc7e417
e9780b1
 
0f58622
e9780b1
15c7d5c
e9780b1
 
 
 
0f58622
e9780b1
0f58622
e9780b1
15c7d5c
 
 
 
 
 
0f58622
cc2fcc8
0f58622
dc7e417
e9780b1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from typing import Dict, List
import aiohttp
import asyncio
import re
import torch
from sentence_transformers import SentenceTransformer, util
from bs4 import BeautifulSoup

class DynamicRecommender:
    def __init__(self):
        self.headers = {
            'User-Agent': (
                'Mozilla/5.0 (Windows NT 10.0; Win64; x64) '
                'AppleWebKit/537.36 (KHTML, like Gecko) '
                'Chrome/100.0.4896.75 Safari/537.36'
            )
        }
        # Load SentenceTransformer for embedding-based recommendations
        self.model = SentenceTransformer('all-mpnet-base-v2')

        # Pre‐define broad candidate categories. Adjust to your needs.
        self.candidate_categories = [
            "tech gadgets",
            "programming books",
            "self help books",
            "business books",
            "leadership novels",
            "fashion accessories",
            "beauty products",
            "board games",
            "music instruments",
            "cooking utensils",
            "cookbooks",
            "art and painting supplies",  # covers user "art" interest
            "home decor",
            "pet supplies",
            "novels",
            "gaming consoles",
            "smartphones",
            "camera gear",
            "toys",
            "gift hamper"
        ]
        # Pre‐encode category texts
        self.category_embeddings = self.model.encode(self.candidate_categories, convert_to_tensor=True)

    # ------------------------------------------------------------------
    # Amazon search
    # ------------------------------------------------------------------
    async def search_amazon(self, query: str) -> List[Dict]:
        print(f"Searching Amazon for: {query}")
        search_url = f"https://www.amazon.in/s?k={query}"
        async with aiohttp.ClientSession() as session:
            async with session.get(search_url, headers=self.headers) as response:
                if response.status == 200:
                    html = await response.text()
                    return self._parse_amazon_results(html)
        return []

    def _parse_amazon_results(self, html: str) -> List[Dict]:
        soup = BeautifulSoup(html, 'html.parser')
        products = []
        
        # (Might need to tweak if Amazon changes HTML)
        search_items = soup.select('.s-result-item')
        
        for item in search_items:
            try:
                name_elem = item.select_one('.a-text-normal')
                price_elem = item.select_one('.a-price-whole')
                link_elem = item.select_one('a.a-link-normal')
                if name_elem and price_elem and link_elem:
                    product_name = name_elem.get_text(strip=True)
                    product_price = price_elem.get_text(strip=True)
                    product_url = link_elem.get('href')

                    products.append({
                        'name': product_name,
                        'price': product_price,
                        'source': 'Amazon',
                        'url': 'https://www.amazon.in' + product_url,
                        'description': f"From Amazon: {product_name}"
                    })
            except Exception:
                continue
        
        return products[:5]

    # ------------------------------------------------------------------
    # Flipkart search
    # ------------------------------------------------------------------
    async def search_flipkart(self, query: str) -> List[Dict]:
        print(f"Searching Flipkart for: {query}")
        search_url = f"https://www.flipkart.com/search?q={query}"
        async with aiohttp.ClientSession() as session:
            async with session.get(search_url, headers=self.headers) as response:
                if response.status == 200:
                    html = await response.text()
                    return self._parse_flipkart_results(html)
        return []

    def _parse_flipkart_results(self, html: str) -> List[Dict]:
        soup = BeautifulSoup(html, 'html.parser')
        products = []

        # (Might need to tweak if Flipkart changes HTML)
        item_cards = soup.select('._1AtVbE')
        
        for item in item_cards:
            try:
                name_elem = item.select_one('._4rR01T')
                price_elem = item.select_one('._30jeq3')
                link_elem = item.select_one('a')
                if name_elem and price_elem and link_elem:
                    product_name = name_elem.get_text(strip=True)
                    product_price = price_elem.get_text(strip=True)
                    product_url = link_elem.get('href')

                    products.append({
                        'name': product_name,
                        'price': product_price,
                        'source': 'Flipkart',
                        'url': 'https://www.flipkart.com' + product_url,
                        'description': f"From Flipkart: {product_name}"
                    })
            except Exception:
                continue
        
        return products[:5]

    # ------------------------------------------------------------------
    # IGP search
    # ------------------------------------------------------------------
    async def search_igp(self, query: str) -> List[Dict]:
        print(f"Searching IGP for: {query}")
        search_url = f"https://www.igp.com/search/{query}"
        async with aiohttp.ClientSession() as session:
            async with session.get(search_url, headers=self.headers) as response:
                if response.status == 200:
                    html = await response.text()
                    return self._parse_igp_results(html)
        return []

    def _parse_igp_results(self, html: str) -> List[Dict]:
        soup = BeautifulSoup(html, 'html.parser')
        products = []
        
        # (Likely need to tweak if IGP changes HTML)
        item_cards = soup.select('.product-item')
        
        for item in item_cards:
            try:
                name_elem = item.select_one('.product-title')
                price_elem = item.select_one('.product-price')
                link_elem = item.select_one('a')
                if name_elem and price_elem and link_elem:
                    product_name = name_elem.get_text(strip=True)
                    product_price = price_elem.get_text(strip=True)
                    product_url = link_elem.get('href')

                    products.append({
                        'name': product_name,
                        'price': product_price,
                        'source': 'IGP',
                        'url': 'https://www.igp.com' + product_url,
                        'description': f"From IGP: {product_name}"
                    })
            except Exception:
                continue
        
        return products[:5]

    # ------------------------------------------------------------------
    # Embedding-based category extraction
    # ------------------------------------------------------------------
    def _extract_categories(self, text: str) -> List[str]:
        # 1. Check for age with a regex
        age_match = re.search(r'age\s+(\d+)', text.lower())
        age = age_match.group(1) if age_match else None

        # 2. Encode user text
        user_emb = self.model.encode(text, convert_to_tensor=True)

        # 3. Cosine similarity with candidate categories
        sims = util.cos_sim(user_emb, self.category_embeddings)[0]
        top_k = min(3, len(self.candidate_categories))  # pick top 3
        top_results = torch.topk(sims, k=top_k)

        best_categories = []
        for idx in top_results.indices:
            cat_text = self.candidate_categories[idx]
            if age:
                cat_text = f"{cat_text} for {age} year old"
            best_categories.append(cat_text)

        print("Top categories chosen via embeddings:", best_categories)
        return best_categories

    # ------------------------------------------------------------------
    # Main recommendations
    # ------------------------------------------------------------------
    async def get_recommendations(self, text: str) -> List[Dict]:
        """
        Search across Amazon, Flipkart, IGP based on top embedding matches,
        then deduplicate, then return final list.
        """
        try:
            # 1) Get top matching categories from user text
            categories = self._extract_categories(text)

            # 2) For each category, search across sites
            all_products = []
            for c in categories:
                amazon_products = await self.search_amazon(c)
                flipkart_products = await self.search_flipkart(c)
                igp_products = await self.search_igp(c)

                all_products.extend(amazon_products + flipkart_products + igp_products)

            # 3) Deduplicate
            seen = set()
            unique_products = []
            for product in all_products:
                if product['name'] not in seen:
                    seen.add(product['name'])
                    unique_products.append(product)

            return unique_products[:5]

        except Exception as e:
            print(f"Error in get_recommendations: {str(e)}")
            return []