File size: 11,385 Bytes
2278277
 
49ea899
2278277
 
 
 
49ea899
 
2278277
49ea899
 
 
 
 
2278277
49ea899
2278277
49ea899
2278277
 
 
 
 
49ea899
 
 
2278277
 
 
49ea899
 
 
 
 
2278277
49ea899
 
 
 
 
 
 
 
 
 
2278277
49ea899
 
2278277
49ea899
 
 
 
0663fac
49ea899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0663fac
 
 
 
 
 
49ea899
 
 
0663fac
 
 
2278277
49ea899
 
 
 
 
 
 
 
 
 
 
 
 
2278277
 
 
49ea899
2278277
 
 
 
 
 
49ea899
 
 
2278277
49ea899
2278277
 
49ea899
 
0663fac
49ea899
0663fac
 
49ea899
 
2278277
49ea899
2278277
49ea899
 
 
0663fac
49ea899
 
 
 
0663fac
49ea899
0663fac
 
49ea899
 
 
0663fac
 
 
 
 
 
 
 
 
 
 
 
49ea899
 
 
0663fac
 
 
 
49ea899
 
 
 
 
 
 
 
 
 
 
 
 
 
0663fac
49ea899
 
 
0663fac
49ea899
 
 
 
0663fac
 
 
49ea899
 
 
 
 
0663fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ea899
 
0663fac
49ea899
 
2278277
49ea899
 
 
 
0663fac
2278277
 
 
 
49ea899
 
 
 
 
 
2278277
49ea899
 
 
 
 
 
 
0663fac
 
 
 
b9f4d50
0663fac
 
 
 
2278277
 
0663fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ea899
 
 
2278277
49ea899
0663fac
 
 
49ea899
0663fac
49ea899
 
0663fac
2278277
 
49ea899
2278277
49ea899
0663fac
 
 
 
49ea899
2278277
 
 
49ea899
 
0663fac
 
 
49ea899
 
2278277
49ea899
2278277
 
 
49ea899
2278277
 
49ea899
 
2278277
 
 
0663fac
49ea899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import io
import random
from io import BytesIO
from typing import List, Tuple

import aiohttp
import panel as pn
import torch
from bokeh.themes import Theme

# import torchvision.transforms.functional as TVF
import torch.nn.functional as F
from PIL import Image
from transformers import AutoImageProcessor, ResNetForImageClassification
from transformers.image_transforms import to_pil_image

DEVICE = "cpu"

pn.extension("mathjax", design="bootstrap", sizing_mode="stretch_width")


@pn.cache
def load_processor_model(
    processor_name: str, model_name: str
) -> Tuple[AutoImageProcessor, ResNetForImageClassification]:
    processor = AutoImageProcessor.from_pretrained(processor_name)
    model = ResNetForImageClassification.from_pretrained(model_name)
    return processor, model


def denormalize(image, mean, std):
    mean = torch.tensor(mean).view(1, -1, 1, 1)  # Reshape for broadcasting
    std = torch.tensor(std).view(1, -1, 1, 1)
    return image * std + mean


# FGSM attack code
def fgsm_attack(image, epsilon, data_grad):
    # Collect the element-wise sign of the data gradient
    sign_data_grad = data_grad.sign()
    # Create the perturbed image by adjusting each pixel of the input image
    perturbed_image = image + epsilon * sign_data_grad
    # Adding clipping to maintain [0,1] range
    perturbed_image = torch.clamp(perturbed_image, 0, 1)
    # Return the perturbed image
    return perturbed_image.detach()


def run_forward_backward(image: Image, epsilon):
    processor, model = load_processor_model(
        "microsoft/resnet-18", "microsoft/resnet-18"
    )

    # Grab input
    processor.crop_pct = 1
    input_tensor = processor(image, return_tensors="pt")["pixel_values"]
    input_tensor.requires_grad_(True)

    # Run inference
    output = model(input_tensor)
    output = output.logits

    # Top target
    top_pred = output.max(1, keepdim=False)[1]

    # Get NLL loss and backward
    loss = F.cross_entropy(output, top_pred)
    model.zero_grad()
    loss.backward()

    # Denormalize input
    mean = torch.tensor(processor.image_mean).view(1, -1, 1, 1)
    std = torch.tensor(processor.image_std).view(1, -1, 1, 1)
    input_tensor_denorm = input_tensor.clone().detach() * std + mean

    # Add noise to input
    random_noise = torch.sign(torch.randn_like(input_tensor)) * 0.02
    input_tensor_denorm_noised = torch.clamp(input_tensor_denorm + random_noise, 0, 1)
    # input_tensor_denorm_noised = input_tensor_denorm

    # FGSM attack
    adv_input_tensor_denorm = fgsm_attack(
        image=input_tensor_denorm_noised,
        epsilon=epsilon,
        data_grad=input_tensor.grad.data,
    )

    # Normalize adversarial input tensor back to the input range
    adv_input_tensor = (adv_input_tensor_denorm - mean) / std

    # Inference on adversarial image
    adv_output = model(adv_input_tensor)
    adv_output = adv_output.logits

    return (
        output,
        adv_output,
        input_tensor_denorm.squeeze(),
        adv_input_tensor_denorm.squeeze(),
    )


async def process_inputs(button_event, image_data: bytes, epsilon: float):
    """
    High level function that takes in the user inputs and returns the
    classification results as panel objects.
    """
    try:
        main.disabled = True
        # if not button_event or (button_event and not isinstance(image_data, bytes)):
        if not isinstance(image_data, bytes):
            yield "##### πŸ‘‹ Upload an image to proceed"
            return

        yield "##### βš™ Fetching image and running model..."
        try:
            # Open the image using PIL
            pil_img = Image.open(BytesIO(image_data))

            # Run forward + FGSM
            clean_logits, adv_logits, input_tensor, adv_input_tensor = (
                run_forward_backward(image=pil_img, epsilon=epsilon)
            )

        except Exception as e:
            yield f"##### Something went wrong, please try a different image! \n {e}"
            return

        img = pn.pane.Image(
            to_pil_image(input_tensor, do_rescale=True),
            height=300,
            align="center",
        )

        # Convert image for visualizing
        adv_img_pil = to_pil_image(adv_input_tensor, do_rescale=True)
        adv_img = pn.pane.Image(
            adv_img_pil,
            height=300,
            align="center",
        )

        # Download image button
        adv_img_bytes = io.BytesIO()
        adv_img_pil.save(adv_img_bytes, format="PNG")
        # download = pn.widgets.FileDownload(
        #     to_pil_image(adv_img_bytes, do_rescale=True),
        #     embed=True,
        #     filename="adv_img.png",
        #     button_type="primary",
        #     button_style="outline",
        #     width_policy="min",
        # )

        # Build the results column
        k_val = 5
        results = pn.Column(
            pn.Row("###### Uploaded", "###### Adversarial"),
            pn.Row(img, adv_img),
            # pn.Row(pn.Spacer(), download),
            f" ###### Top {k_val} class predictions",
        )

        # Get likelihoods
        likelihoods = [
            F.softmax(clean_logits, dim=1).squeeze(),
            F.softmax(adv_logits, dim=1).squeeze(),
        ]

        label_bars_rows = pn.Row()

        for likelihood_tensor in likelihoods:
            # Get top k values and indices
            vals_topk_clean, idx_topk_clean = torch.topk(likelihood_tensor, k=k_val)
            label_bars = pn.Column()

            for idx, val in zip(idx_topk_clean, vals_topk_clean):
                prob = val.item()
                row_label = pn.widgets.StaticText(
                    name=f"{classes[idx]}", value=f"{prob:.2%}", align="center"
                )
                row_bar = pn.indicators.Progress(
                    value=int(prob * 100),
                    sizing_mode="stretch_width",
                    bar_color="success"
                    if prob > 0.7
                    else "warning",  # Dynamic color based on value
                    margin=(0, 10),
                    design=pn.theme.Material,
                )
                label_bars.append(pn.Column(row_label, row_bar))

            # for likelihood_tensor in likelihoods:
            #     # Get top
            #     vals_topk_clean, idx_topk_clean = torch.topk(likelihood_tensor, k=k_val)
            #     label_bars = pn.Column()
            #     for idx, val in zip(idx_topk_clean, vals_topk_clean):
            #         prob = val.item()
            #         row_label = pn.widgets.StaticText(
            #             name=f"{classes[idx]}", value=f"{prob:.2%}", align="center"
            #         )
            #         row_bar = pn.indicators.Progress(
            #             value=int(prob * 100),
            #             sizing_mode="stretch_width",
            #             bar_color="secondary",
            #             margin=(0, 10),
            #             design=pn.theme.Material,
            #         )
            #         label_bars.append(pn.Column(row_label, row_bar))

            label_bars_rows.append(label_bars)

        results.append(label_bars_rows)

        yield results

    except Exception as e:
        yield f"##### Something went wrong! \n {e}"
        return

    finally:
        main.disabled = False


####################################################################################################################################
# Get classes
classes = []
with open("classes.txt", "r") as file:
    classes = file.read()
    classes = classes.split("\n")

# Create widgets
############################################
# Fil upload widget
file_input = pn.widgets.FileInput(name="Upload a PNG image", accept=".png,.jpg")

# Epsilon
epsilon_slider = pn.widgets.FloatSlider(
    name=r"$$\epsilon$$ parameter for FGSM",
    start=0,
    end=0.1,
    step=0.005,
    value=0.005,
    format="1[.]000",
    align="center",
    max_width=500,
    width_policy="max",
)

# alpha_slider = pn.widgets.FloatSlider(
#     name=r"$$\alpha$$ parameter for Gaussian noise",
#     start=0,
#     end=0.1,
#     step=0.005,
#     value=0.000,
#     format="1[.]000",
#     align="center",
#     max_width=500,
#     width_policy="max"

# )

# Regenerate button
regenerate = pn.widgets.Button(
    name="Regenerate",
    button_type="primary",
    width_policy="min",
    max_width=105,
)
############################################

# Organize widgets in a column
input_widgets = pn.Column(
    """
    ###### Classify an image (png/jpeg) with a pre-trained [ResNet18](https://huggingface.co/microsoft/resnet-18) and generate an adversarial example.\n
    
    Wondering where the class names come from? Find the list of ImageNet-1K classes [here.](https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/)

    *Please be patient with the application, it is running on a low-resource device.*
    """,
    file_input,
    pn.Row(epsilon_slider, pn.Spacer(width_policy="min", max_width=25), regenerate),
)

# Add interactivity
interactive_result = pn.panel(
    pn.bind(
        process_inputs,
        regenerate,
        file_input.param.value,
        epsilon_slider.param.value,
    ),
    height=600,
)

footer = pn.pane.Markdown(
    """
    <br><br>

    If the application is too slow for you, head over to the README to get this running locally.
    """
)

# Create dashboard
main = pn.WidgetBox(
    input_widgets,
    interactive_result,
    footer,
)

title = "Adversarial Sample Generation"

pn.template.BootstrapTemplate(
    title=title,
    main=main,
    main_max_width="min(75%, 698px)",
    header_background="#101820",
).servable(title=title)


# Functions from original demo

# ICON_URLS = {
#     "brand-github": "https://github.com/holoviz/panel",
#     "brand-twitter": "https://twitter.com/Panel_Org",
#     "brand-linkedin": "https://www.linkedin.com/company/panel-org",
#     "message-circle": "https://discourse.holoviz.org/",
#     "brand-discord": "https://discord.gg/AXRHnJU6sP",
# }


# async def random_url(_):
#     pet = random.choice(["cat", "dog"])
#     api_url = f"https://api.the{pet}api.com/v1/images/search"
#     async with aiohttp.ClientSession() as session:
#         async with session.get(api_url) as resp:
#             return (await resp.json())[0]["url"]


# @pn.cache
# def load_processor_model(
#     processor_name: str, model_name: str
# ) -> Tuple[CLIPProcessor, CLIPModel]:
#     processor = CLIPProcessor.from_pretrained(processor_name)
#     model = CLIPModel.from_pretrained(model_name)
#     return processor, model


# async def open_image_url(image_url: str) -> Image:
#     async with aiohttp.ClientSession() as session:
#         async with session.get(image_url) as resp:
#             return Image.open(io.BytesIO(await resp.read()))


# def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
#     processor, model = load_processor_model(
#         "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
#     )
#     inputs = processor(
#         text=class_items,
#         images=[image],
#         return_tensors="pt",  # pytorch tensors
#     )
#     print(inputs)
#     outputs = model(**inputs)
#     logits_per_image = outputs.logits_per_image
#     class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
#     return class_likelihoods[0]