Spaces:
Sleeping
Sleeping
root
commited on
Commit
Β·
0663fac
1
Parent(s):
55150dc
add random noise
Browse files
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: π
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: green
|
|
@@ -7,4 +7,16 @@ sdk: docker
|
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: FGSM Project
|
| 3 |
emoji: π
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: green
|
|
|
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
+
This repository was developed inside a [devcontainer](https://containers.dev/).
|
| 11 |
+
|
| 12 |
+
If you are after speed, you can run this application locally.
|
| 13 |
+
|
| 14 |
+
1. Clone the repository
|
| 15 |
+
|
| 16 |
+
`git clone https://huggingface.co/spaces/niniack/fgsm-project`
|
| 17 |
+
|
| 18 |
+
2. Open up the project inside a devcontainer. Check [this](https://code.visualstudio.com/docs/devcontainers/containers) for instructions with VS Code.
|
| 19 |
+
|
| 20 |
+
3. Start the application
|
| 21 |
+
|
| 22 |
+
`panel serve /path/to/app.py/ --dev`
|
app.py
CHANGED
|
@@ -52,6 +52,7 @@ def run_forward_backward(image: Image, epsilon):
|
|
| 52 |
)
|
| 53 |
|
| 54 |
# Grab input
|
|
|
|
| 55 |
input_tensor = processor(image, return_tensors="pt")["pixel_values"]
|
| 56 |
input_tensor.requires_grad_(True)
|
| 57 |
|
|
@@ -70,11 +71,18 @@ def run_forward_backward(image: Image, epsilon):
|
|
| 70 |
# Denormalize input
|
| 71 |
mean = torch.tensor(processor.image_mean).view(1, -1, 1, 1)
|
| 72 |
std = torch.tensor(processor.image_std).view(1, -1, 1, 1)
|
| 73 |
-
input_tensor_denorm = input_tensor.detach() * std + mean
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# FGSM attack
|
| 76 |
adv_input_tensor_denorm = fgsm_attack(
|
| 77 |
-
image=
|
|
|
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
# Normalize adversarial input tensor back to the input range
|
|
@@ -84,7 +92,6 @@ def run_forward_backward(image: Image, epsilon):
|
|
| 84 |
adv_output = model(adv_input_tensor)
|
| 85 |
adv_output = adv_output.logits
|
| 86 |
|
| 87 |
-
|
| 88 |
return (
|
| 89 |
output,
|
| 90 |
adv_output,
|
|
@@ -109,10 +116,10 @@ async def process_inputs(button_event, image_data: bytes, epsilon: float):
|
|
| 109 |
try:
|
| 110 |
# Open the image using PIL
|
| 111 |
pil_img = Image.open(BytesIO(image_data))
|
| 112 |
-
|
| 113 |
# Run forward + FGSM
|
| 114 |
-
clean_logits, adv_logits, input_tensor, adv_input_tensor =
|
| 115 |
-
image=pil_img, epsilon=epsilon
|
| 116 |
)
|
| 117 |
|
| 118 |
except Exception as e:
|
|
@@ -121,21 +128,37 @@ async def process_inputs(button_event, image_data: bytes, epsilon: float):
|
|
| 121 |
|
| 122 |
img = pn.pane.Image(
|
| 123 |
to_pil_image(input_tensor, do_rescale=True),
|
| 124 |
-
height=
|
| 125 |
align="center",
|
| 126 |
)
|
| 127 |
|
| 128 |
# Convert image for visualizing
|
|
|
|
| 129 |
adv_img = pn.pane.Image(
|
| 130 |
-
|
| 131 |
-
height=
|
| 132 |
align="center",
|
| 133 |
)
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
# Build the results column
|
| 136 |
k_val = 5
|
| 137 |
results = pn.Column(
|
| 138 |
-
pn.Row("###### Uploaded", "###### Adversarial"),
|
|
|
|
|
|
|
|
|
|
| 139 |
)
|
| 140 |
|
| 141 |
# Get likelihoods
|
|
@@ -150,43 +173,43 @@ async def process_inputs(button_event, image_data: bytes, epsilon: float):
|
|
| 150 |
# Get top k values and indices
|
| 151 |
vals_topk_clean, idx_topk_clean = torch.topk(likelihood_tensor, k=k_val)
|
| 152 |
label_bars = pn.Column()
|
| 153 |
-
|
| 154 |
for idx, val in zip(idx_topk_clean, vals_topk_clean):
|
| 155 |
prob = val.item()
|
| 156 |
row_label = pn.widgets.StaticText(
|
| 157 |
-
name=f"{classes[idx]}",
|
| 158 |
-
value=f"{prob:.2%}",
|
| 159 |
-
align="center"
|
| 160 |
)
|
| 161 |
row_bar = pn.indicators.Progress(
|
| 162 |
value=int(prob * 100),
|
| 163 |
sizing_mode="stretch_width",
|
| 164 |
-
bar_color="success"
|
|
|
|
|
|
|
| 165 |
margin=(0, 10),
|
| 166 |
design=pn.theme.Material,
|
| 167 |
)
|
| 168 |
label_bars.append(pn.Column(row_label, row_bar))
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
|
| 188 |
label_bars_rows.append(label_bars)
|
| 189 |
-
|
| 190 |
results.append(label_bars_rows)
|
| 191 |
|
| 192 |
yield results
|
|
@@ -194,7 +217,7 @@ async def process_inputs(button_event, image_data: bytes, epsilon: float):
|
|
| 194 |
except Exception as e:
|
| 195 |
yield f"##### Something went wrong! \n {e}"
|
| 196 |
return
|
| 197 |
-
|
| 198 |
finally:
|
| 199 |
main.disabled = False
|
| 200 |
|
|
@@ -213,37 +236,68 @@ file_input = pn.widgets.FileInput(name="Upload a PNG image", accept=".png,.jpg")
|
|
| 213 |
|
| 214 |
# Epsilon
|
| 215 |
epsilon_slider = pn.widgets.FloatSlider(
|
| 216 |
-
name=r"$$\epsilon$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
)
|
| 218 |
|
| 219 |
-
#
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
############################################
|
| 223 |
|
| 224 |
# Organize widgets in a column
|
| 225 |
input_widgets = pn.Column(
|
| 226 |
"""
|
| 227 |
-
###### Classify an image with a pre-trained [ResNet18](https://huggingface.co/microsoft/resnet-18) and generate an adversarial example.\n
|
|
|
|
|
|
|
| 228 |
|
| 229 |
-
Please be patient with the application, it is running on a low-resource device
|
| 230 |
""",
|
| 231 |
file_input,
|
| 232 |
-
epsilon_slider,
|
| 233 |
)
|
| 234 |
|
| 235 |
# Add interactivity
|
| 236 |
interactive_result = pn.panel(
|
| 237 |
pn.bind(
|
| 238 |
-
process_inputs,
|
|
|
|
|
|
|
|
|
|
| 239 |
),
|
| 240 |
height=600,
|
| 241 |
)
|
| 242 |
|
| 243 |
footer = pn.pane.Markdown(
|
| 244 |
"""
|
| 245 |
-
<br><br
|
| 246 |
-
|
|
|
|
| 247 |
"""
|
| 248 |
)
|
| 249 |
|
|
@@ -259,7 +313,7 @@ title = "Adversarial Sample Generation"
|
|
| 259 |
pn.template.BootstrapTemplate(
|
| 260 |
title=title,
|
| 261 |
main=main,
|
| 262 |
-
main_max_width="min(
|
| 263 |
header_background="#101820",
|
| 264 |
).servable(title=title)
|
| 265 |
|
|
|
|
| 52 |
)
|
| 53 |
|
| 54 |
# Grab input
|
| 55 |
+
processor.crop_pct = 1
|
| 56 |
input_tensor = processor(image, return_tensors="pt")["pixel_values"]
|
| 57 |
input_tensor.requires_grad_(True)
|
| 58 |
|
|
|
|
| 71 |
# Denormalize input
|
| 72 |
mean = torch.tensor(processor.image_mean).view(1, -1, 1, 1)
|
| 73 |
std = torch.tensor(processor.image_std).view(1, -1, 1, 1)
|
| 74 |
+
input_tensor_denorm = input_tensor.clone().detach() * std + mean
|
| 75 |
+
|
| 76 |
+
# Add noise to input
|
| 77 |
+
random_noise = torch.sign(torch.randn_like(input_tensor)) * 0.02
|
| 78 |
+
input_tensor_denorm_noised = torch.clamp(input_tensor_denorm + random_noise, 0, 1)
|
| 79 |
+
# input_tensor_denorm_noised = input_tensor_denorm
|
| 80 |
|
| 81 |
# FGSM attack
|
| 82 |
adv_input_tensor_denorm = fgsm_attack(
|
| 83 |
+
image=input_tensor_denorm_noised,
|
| 84 |
+
epsilon=epsilon,
|
| 85 |
+
data_grad=input_tensor.grad.data,
|
| 86 |
)
|
| 87 |
|
| 88 |
# Normalize adversarial input tensor back to the input range
|
|
|
|
| 92 |
adv_output = model(adv_input_tensor)
|
| 93 |
adv_output = adv_output.logits
|
| 94 |
|
|
|
|
| 95 |
return (
|
| 96 |
output,
|
| 97 |
adv_output,
|
|
|
|
| 116 |
try:
|
| 117 |
# Open the image using PIL
|
| 118 |
pil_img = Image.open(BytesIO(image_data))
|
| 119 |
+
|
| 120 |
# Run forward + FGSM
|
| 121 |
+
clean_logits, adv_logits, input_tensor, adv_input_tensor = (
|
| 122 |
+
run_forward_backward(image=pil_img, epsilon=epsilon)
|
| 123 |
)
|
| 124 |
|
| 125 |
except Exception as e:
|
|
|
|
| 128 |
|
| 129 |
img = pn.pane.Image(
|
| 130 |
to_pil_image(input_tensor, do_rescale=True),
|
| 131 |
+
height=300,
|
| 132 |
align="center",
|
| 133 |
)
|
| 134 |
|
| 135 |
# Convert image for visualizing
|
| 136 |
+
adv_img_pil = to_pil_image(adv_input_tensor, do_rescale=True)
|
| 137 |
adv_img = pn.pane.Image(
|
| 138 |
+
adv_img_pil,
|
| 139 |
+
height=300,
|
| 140 |
align="center",
|
| 141 |
)
|
| 142 |
|
| 143 |
+
# Download image button
|
| 144 |
+
adv_img_bytes = io.BytesIO()
|
| 145 |
+
adv_img_pil.save(adv_img_bytes, format="PNG")
|
| 146 |
+
# download = pn.widgets.FileDownload(
|
| 147 |
+
# to_pil_image(adv_img_bytes, do_rescale=True),
|
| 148 |
+
# embed=True,
|
| 149 |
+
# filename="adv_img.png",
|
| 150 |
+
# button_type="primary",
|
| 151 |
+
# button_style="outline",
|
| 152 |
+
# width_policy="min",
|
| 153 |
+
# )
|
| 154 |
+
|
| 155 |
# Build the results column
|
| 156 |
k_val = 5
|
| 157 |
results = pn.Column(
|
| 158 |
+
pn.Row("###### Uploaded", "###### Adversarial"),
|
| 159 |
+
pn.Row(img, adv_img),
|
| 160 |
+
# pn.Row(pn.Spacer(), download),
|
| 161 |
+
f" ###### Top {k_val} class predictions",
|
| 162 |
)
|
| 163 |
|
| 164 |
# Get likelihoods
|
|
|
|
| 173 |
# Get top k values and indices
|
| 174 |
vals_topk_clean, idx_topk_clean = torch.topk(likelihood_tensor, k=k_val)
|
| 175 |
label_bars = pn.Column()
|
| 176 |
+
|
| 177 |
for idx, val in zip(idx_topk_clean, vals_topk_clean):
|
| 178 |
prob = val.item()
|
| 179 |
row_label = pn.widgets.StaticText(
|
| 180 |
+
name=f"{classes[idx]}", value=f"{prob:.2%}", align="center"
|
|
|
|
|
|
|
| 181 |
)
|
| 182 |
row_bar = pn.indicators.Progress(
|
| 183 |
value=int(prob * 100),
|
| 184 |
sizing_mode="stretch_width",
|
| 185 |
+
bar_color="success"
|
| 186 |
+
if prob > 0.7
|
| 187 |
+
else "warning", # Dynamic color based on value
|
| 188 |
margin=(0, 10),
|
| 189 |
design=pn.theme.Material,
|
| 190 |
)
|
| 191 |
label_bars.append(pn.Column(row_label, row_bar))
|
| 192 |
|
| 193 |
+
# for likelihood_tensor in likelihoods:
|
| 194 |
+
# # Get top
|
| 195 |
+
# vals_topk_clean, idx_topk_clean = torch.topk(likelihood_tensor, k=k_val)
|
| 196 |
+
# label_bars = pn.Column()
|
| 197 |
+
# for idx, val in zip(idx_topk_clean, vals_topk_clean):
|
| 198 |
+
# prob = val.item()
|
| 199 |
+
# row_label = pn.widgets.StaticText(
|
| 200 |
+
# name=f"{classes[idx]}", value=f"{prob:.2%}", align="center"
|
| 201 |
+
# )
|
| 202 |
+
# row_bar = pn.indicators.Progress(
|
| 203 |
+
# value=int(prob * 100),
|
| 204 |
+
# sizing_mode="stretch_width",
|
| 205 |
+
# bar_color="secondary",
|
| 206 |
+
# margin=(0, 10),
|
| 207 |
+
# design=pn.theme.Material,
|
| 208 |
+
# )
|
| 209 |
+
# label_bars.append(pn.Column(row_label, row_bar))
|
| 210 |
|
| 211 |
label_bars_rows.append(label_bars)
|
| 212 |
+
|
| 213 |
results.append(label_bars_rows)
|
| 214 |
|
| 215 |
yield results
|
|
|
|
| 217 |
except Exception as e:
|
| 218 |
yield f"##### Something went wrong! \n {e}"
|
| 219 |
return
|
| 220 |
+
|
| 221 |
finally:
|
| 222 |
main.disabled = False
|
| 223 |
|
|
|
|
| 236 |
|
| 237 |
# Epsilon
|
| 238 |
epsilon_slider = pn.widgets.FloatSlider(
|
| 239 |
+
name=r"$$\epsilon$$ parameter for FGSM",
|
| 240 |
+
start=0,
|
| 241 |
+
end=0.1,
|
| 242 |
+
step=0.005,
|
| 243 |
+
value=0.000,
|
| 244 |
+
format="1[.]000",
|
| 245 |
+
align="center",
|
| 246 |
+
max_width=500,
|
| 247 |
+
width_policy="max",
|
| 248 |
)
|
| 249 |
|
| 250 |
+
# alpha_slider = pn.widgets.FloatSlider(
|
| 251 |
+
# name=r"$$\alpha$$ parameter for Gaussian noise",
|
| 252 |
+
# start=0,
|
| 253 |
+
# end=0.1,
|
| 254 |
+
# step=0.005,
|
| 255 |
+
# value=0.000,
|
| 256 |
+
# format="1[.]000",
|
| 257 |
+
# align="center",
|
| 258 |
+
# max_width=500,
|
| 259 |
+
# width_policy="max"
|
| 260 |
+
|
| 261 |
+
# )
|
| 262 |
+
|
| 263 |
+
# Regenerate button
|
| 264 |
+
regenerate = pn.widgets.Button(
|
| 265 |
+
name="Regenerate",
|
| 266 |
+
button_type="primary",
|
| 267 |
+
width_policy="min",
|
| 268 |
+
max_width=105,
|
| 269 |
+
)
|
| 270 |
############################################
|
| 271 |
|
| 272 |
# Organize widgets in a column
|
| 273 |
input_widgets = pn.Column(
|
| 274 |
"""
|
| 275 |
+
###### Classify an image (png/jpeg) with a pre-trained [ResNet18](https://huggingface.co/microsoft/resnet-18) and generate an adversarial example.\n
|
| 276 |
+
|
| 277 |
+
Wondering where the class names come from? Find the list of ImageNet-1K classes [here.](https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/)
|
| 278 |
|
| 279 |
+
*Please be patient with the application, it is running on a low-resource device.*
|
| 280 |
""",
|
| 281 |
file_input,
|
| 282 |
+
pn.Row(epsilon_slider, pn.Spacer(width_policy="min", max_width=25), regenerate),
|
| 283 |
)
|
| 284 |
|
| 285 |
# Add interactivity
|
| 286 |
interactive_result = pn.panel(
|
| 287 |
pn.bind(
|
| 288 |
+
process_inputs,
|
| 289 |
+
regenerate,
|
| 290 |
+
file_input.param.value,
|
| 291 |
+
epsilon_slider.param.value,
|
| 292 |
),
|
| 293 |
height=600,
|
| 294 |
)
|
| 295 |
|
| 296 |
footer = pn.pane.Markdown(
|
| 297 |
"""
|
| 298 |
+
<br><br>
|
| 299 |
+
|
| 300 |
+
If the application is too slow for you, head over to the README to get this running locally.
|
| 301 |
"""
|
| 302 |
)
|
| 303 |
|
|
|
|
| 313 |
pn.template.BootstrapTemplate(
|
| 314 |
title=title,
|
| 315 |
main=main,
|
| 316 |
+
main_max_width="min(75%, 698px)",
|
| 317 |
header_background="#101820",
|
| 318 |
).servable(title=title)
|
| 319 |
|