agentic-system / space /venture_strategies.py
Cascade Bot
Added Groq streaming support and optimizations - clean version
1d75522
"""Specialized strategies for autonomous business and revenue generation."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy
class VentureType(Enum):
"""Types of business ventures."""
AI_STARTUP = "ai_startup"
SAAS = "saas"
API_SERVICE = "api_service"
DATA_ANALYTICS = "data_analytics"
AUTOMATION_SERVICE = "automation_service"
CONSULTING = "consulting"
DIGITAL_PRODUCTS = "digital_products"
MARKETPLACE = "marketplace"
class RevenueStream(Enum):
"""Types of revenue streams."""
SUBSCRIPTION = "subscription"
USAGE_BASED = "usage_based"
LICENSING = "licensing"
CONSULTING = "consulting"
PRODUCT_SALES = "product_sales"
COMMISSION = "commission"
ADVERTISING = "advertising"
PARTNERSHIP = "partnership"
@dataclass
class VentureMetrics:
"""Key business metrics."""
revenue: float
profit_margin: float
customer_acquisition_cost: float
lifetime_value: float
churn_rate: float
growth_rate: float
burn_rate: float
runway_months: float
roi: float
@dataclass
class MarketOpportunity:
"""Market opportunity analysis."""
market_size: float
growth_potential: float
competition_level: float
entry_barriers: float
regulatory_risks: float
technology_risks: float
monetization_potential: float
class AIStartupStrategy(ReasoningStrategy):
"""
Advanced AI startup strategy that:
1. Identifies profitable AI applications
2. Analyzes market opportunities
3. Develops MVP strategies
4. Plans scaling approaches
5. Optimizes revenue streams
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate AI startup strategy."""
try:
# Market analysis
market = await self._analyze_market(query, context)
# Technology assessment
tech = await self._assess_technology(market, context)
# Business model
model = await self._develop_business_model(tech, context)
# Growth strategy
strategy = await self._create_growth_strategy(model, context)
# Financial projections
projections = await self._project_financials(strategy, context)
return {
"success": projections["annual_profit"] >= 1_000_000,
"market_analysis": market,
"tech_assessment": tech,
"business_model": model,
"growth_strategy": strategy,
"financials": projections,
"confidence": self._calculate_confidence(projections)
}
except Exception as e:
logging.error(f"Error in AI startup strategy: {str(e)}")
return {"success": False, "error": str(e)}
class SaaSVentureStrategy(ReasoningStrategy):
"""
Advanced SaaS venture strategy that:
1. Identifies scalable SaaS opportunities
2. Develops pricing strategies
3. Plans customer acquisition
4. Optimizes retention
5. Maximizes recurring revenue
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate SaaS venture strategy."""
try:
# Opportunity analysis
opportunity = await self._analyze_opportunity(query, context)
# Product strategy
product = await self._develop_product_strategy(opportunity, context)
# Pricing model
pricing = await self._create_pricing_model(product, context)
# Growth plan
growth = await self._plan_growth(pricing, context)
# Revenue projections
projections = await self._project_revenue(growth, context)
return {
"success": projections["annual_revenue"] >= 1_000_000,
"opportunity": opportunity,
"product": product,
"pricing": pricing,
"growth": growth,
"projections": projections
}
except Exception as e:
logging.error(f"Error in SaaS venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class AutomationVentureStrategy(ReasoningStrategy):
"""
Advanced automation venture strategy that:
1. Identifies automation opportunities
2. Analyzes cost-saving potential
3. Develops automation solutions
4. Plans implementation
5. Maximizes ROI
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate automation venture strategy."""
try:
# Opportunity identification
opportunities = await self._identify_opportunities(query, context)
# Solution development
solutions = await self._develop_solutions(opportunities, context)
# Implementation strategy
implementation = await self._create_implementation_strategy(solutions, context)
# ROI analysis
roi = await self._analyze_roi(implementation, context)
# Scale strategy
scale = await self._create_scale_strategy(roi, context)
return {
"success": roi["annual_profit"] >= 1_000_000,
"opportunities": opportunities,
"solutions": solutions,
"implementation": implementation,
"roi": roi,
"scale": scale
}
except Exception as e:
logging.error(f"Error in automation venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class DataVentureStrategy(ReasoningStrategy):
"""
Advanced data venture strategy that:
1. Identifies valuable data opportunities
2. Develops data products
3. Creates monetization strategies
4. Ensures compliance
5. Maximizes data value
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate data venture strategy."""
try:
# Data opportunity analysis
opportunity = await self._analyze_data_opportunity(query, context)
# Product development
product = await self._develop_data_product(opportunity, context)
# Monetization strategy
monetization = await self._create_monetization_strategy(product, context)
# Compliance plan
compliance = await self._ensure_compliance(monetization, context)
# Scale plan
scale = await self._plan_scaling(compliance, context)
return {
"success": monetization["annual_revenue"] >= 1_000_000,
"opportunity": opportunity,
"product": product,
"monetization": monetization,
"compliance": compliance,
"scale": scale
}
except Exception as e:
logging.error(f"Error in data venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class APIVentureStrategy(ReasoningStrategy):
"""
Advanced API venture strategy that:
1. Identifies API opportunities
2. Develops API products
3. Creates pricing models
4. Plans scaling
5. Maximizes API value
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate API venture strategy."""
try:
# API opportunity analysis
opportunity = await self._analyze_api_opportunity(query, context)
# Product development
product = await self._develop_api_product(opportunity, context)
# Pricing strategy
pricing = await self._create_api_pricing(product, context)
# Scale strategy
scale = await self._plan_api_scaling(pricing, context)
# Revenue projections
projections = await self._project_api_revenue(scale, context)
return {
"success": projections["annual_revenue"] >= 1_000_000,
"opportunity": opportunity,
"product": product,
"pricing": pricing,
"scale": scale,
"projections": projections
}
except Exception as e:
logging.error(f"Error in API venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class MarketplaceVentureStrategy(ReasoningStrategy):
"""
Advanced marketplace venture strategy that:
1. Identifies marketplace opportunities
2. Develops platform strategy
3. Plans liquidity generation
4. Optimizes matching
5. Maximizes transaction value
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate marketplace venture strategy."""
try:
# Opportunity analysis
opportunity = await self._analyze_marketplace_opportunity(query, context)
# Platform strategy
platform = await self._develop_platform_strategy(opportunity, context)
# Liquidity strategy
liquidity = await self._create_liquidity_strategy(platform, context)
# Growth strategy
growth = await self._plan_marketplace_growth(liquidity, context)
# Revenue projections
projections = await self._project_marketplace_revenue(growth, context)
return {
"success": projections["annual_revenue"] >= 1_000_000,
"opportunity": opportunity,
"platform": platform,
"liquidity": liquidity,
"growth": growth,
"projections": projections
}
except Exception as e:
logging.error(f"Error in marketplace venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class VenturePortfolioStrategy(ReasoningStrategy):
"""
Advanced venture portfolio strategy that:
1. Optimizes venture mix
2. Balances risk-reward
3. Allocates resources
4. Manages dependencies
5. Maximizes portfolio value
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate venture portfolio strategy."""
try:
# Portfolio analysis
analysis = await self._analyze_portfolio(query, context)
# Venture selection
selection = await self._select_ventures(analysis, context)
# Resource allocation
allocation = await self._allocate_resources(selection, context)
# Risk management
risk = await self._manage_risk(allocation, context)
# Portfolio projections
projections = await self._project_portfolio(risk, context)
return {
"success": projections["annual_profit"] >= 1_000_000,
"analysis": analysis,
"selection": selection,
"allocation": allocation,
"risk": risk,
"projections": projections
}
except Exception as e:
logging.error(f"Error in venture portfolio strategy: {str(e)}")
return {"success": False, "error": str(e)}
async def _analyze_portfolio(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze potential venture portfolio."""
prompt = f"""
Analyze venture portfolio opportunities:
Query: {query}
Context: {json.dumps(context)}
Consider:
1. Market opportunities
2. Technology trends
3. Resource requirements
4. Risk factors
5. Synergy potential
Format as:
[Analysis]
Opportunities: ...
Trends: ...
Resources: ...
Risks: ...
Synergies: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_portfolio_analysis(response["answer"])
def _parse_portfolio_analysis(self, response: str) -> Dict[str, Any]:
"""Parse portfolio analysis from response."""
analysis = {
"opportunities": [],
"trends": [],
"resources": {},
"risks": [],
"synergies": []
}
current_section = None
for line in response.split('\n'):
line = line.strip()
if line.startswith('Opportunities:'):
current_section = "opportunities"
elif line.startswith('Trends:'):
current_section = "trends"
elif line.startswith('Resources:'):
current_section = "resources"
elif line.startswith('Risks:'):
current_section = "risks"
elif line.startswith('Synergies:'):
current_section = "synergies"
elif current_section and line:
if current_section == "resources":
try:
key, value = line.split(':')
analysis[current_section][key.strip()] = value.strip()
except:
pass
else:
analysis[current_section].append(line)
return analysis
def get_venture_metrics(self) -> Dict[str, Any]:
"""Get comprehensive venture metrics."""
return {
"portfolio_metrics": {
"total_ventures": len(self.ventures),
"profitable_ventures": sum(1 for v in self.ventures if v.metrics.profit_margin > 0),
"total_revenue": sum(v.metrics.revenue for v in self.ventures),
"average_margin": np.mean([v.metrics.profit_margin for v in self.ventures]),
"portfolio_roi": np.mean([v.metrics.roi for v in self.ventures])
},
"market_metrics": {
"total_market_size": sum(v.opportunity.market_size for v in self.ventures),
"average_growth": np.mean([v.opportunity.growth_potential for v in self.ventures]),
"risk_score": np.mean([v.opportunity.regulatory_risks + v.opportunity.technology_risks for v in self.ventures])
},
"performance_metrics": {
"customer_acquisition": np.mean([v.metrics.customer_acquisition_cost for v in self.ventures]),
"lifetime_value": np.mean([v.metrics.lifetime_value for v in self.ventures]),
"churn_rate": np.mean([v.metrics.churn_rate for v in self.ventures]),
"burn_rate": sum(v.metrics.burn_rate for v in self.ventures)
}
}
class VentureStrategy(ReasoningStrategy):
"""
Advanced venture strategy that combines multiple specialized strategies
to generate comprehensive business plans and recommendations.
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize venture strategy with component strategies."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Initialize component strategies with shared config
strategy_config = {
'min_confidence': self.min_confidence,
'parallel_threshold': self.parallel_threshold,
'learning_rate': self.learning_rate,
'strategy_weights': self.strategy_weights
}
self.strategies = {
VentureType.AI_STARTUP: AIStartupStrategy(strategy_config),
VentureType.SAAS: SaaSVentureStrategy(strategy_config),
VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(strategy_config),
VentureType.DATA_ANALYTICS: DataVentureStrategy(strategy_config),
VentureType.API_SERVICE: APIVentureStrategy(strategy_config),
VentureType.MARKETPLACE: MarketplaceVentureStrategy(strategy_config)
}
# Portfolio strategy for multi-venture optimization
self.portfolio_strategy = VenturePortfolioStrategy(strategy_config)
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate venture strategy based on query and context.
Args:
query: The venture strategy query
context: Additional context and parameters
Returns:
Dict containing venture strategy and confidence scores
"""
try:
# Determine venture type from query/context
venture_type = self._determine_venture_type(query, context)
# Get strategy for venture type
strategy = self.strategies.get(venture_type)
if not strategy:
raise ValueError(f"Unsupported venture type: {venture_type}")
# Generate strategy
strategy_result = await strategy.reason(query, context)
# Get portfolio analysis
portfolio_result = await self.portfolio_strategy.reason(query, context)
# Combine results
combined_result = self._combine_results(
strategy_result,
portfolio_result,
venture_type
)
return {
'answer': self._format_strategy(combined_result),
'confidence': combined_result.get('confidence', 0.0),
'venture_type': venture_type.value,
'strategy': strategy_result,
'portfolio_analysis': portfolio_result
}
except Exception as e:
logging.error(f"Venture strategy generation failed: {str(e)}")
return {
'error': f"Venture strategy generation failed: {str(e)}",
'confidence': 0.0
}
def _determine_venture_type(self, query: str, context: Dict[str, Any]) -> VentureType:
"""Determine venture type from query and context."""
# Use context if available
if 'venture_type' in context:
return VentureType(context['venture_type'])
# Simple keyword matching
query_lower = query.lower()
if any(term in query_lower for term in ['ai', 'ml', 'model', 'neural']):
return VentureType.AI_STARTUP
elif any(term in query_lower for term in ['saas', 'software', 'cloud']):
return VentureType.SAAS
elif any(term in query_lower for term in ['automate', 'automation', 'workflow']):
return VentureType.AUTOMATION_SERVICE
elif any(term in query_lower for term in ['data', 'analytics', 'insights']):
return VentureType.DATA_ANALYTICS
elif any(term in query_lower for term in ['api', 'service', 'endpoint']):
return VentureType.API_SERVICE
elif any(term in query_lower for term in ['marketplace', 'platform', 'network']):
return VentureType.MARKETPLACE
# Default to AI startup if unclear
return VentureType.AI_STARTUP
def _combine_results(
self,
strategy_result: Dict[str, Any],
portfolio_result: Dict[str, Any],
venture_type: VentureType
) -> Dict[str, Any]:
"""Combine strategy and portfolio results."""
return {
'venture_type': venture_type.value,
'strategy': strategy_result.get('strategy', {}),
'metrics': strategy_result.get('metrics', {}),
'portfolio_fit': portfolio_result.get('portfolio_fit', {}),
'recommendations': strategy_result.get('recommendations', []),
'confidence': min(
strategy_result.get('confidence', 0.0),
portfolio_result.get('confidence', 0.0)
)
}
def _format_strategy(self, result: Dict[str, Any]) -> str:
"""Format venture strategy into readable text."""
sections = []
# Venture type
sections.append(f"Venture Type: {result['venture_type'].replace('_', ' ').title()}")
# Strategy overview
if 'strategy' in result:
strategy = result['strategy']
sections.append("\nStrategy Overview:")
for key, value in strategy.items():
sections.append(f"- {key.replace('_', ' ').title()}: {value}")
# Key metrics
if 'metrics' in result:
metrics = result['metrics']
sections.append("\nKey Metrics:")
for key, value in metrics.items():
if isinstance(value, (int, float)):
sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}")
else:
sections.append(f"- {key.replace('_', ' ').title()}: {value}")
# Portfolio fit
if 'portfolio_fit' in result:
fit = result['portfolio_fit']
sections.append("\nPortfolio Analysis:")
for key, value in fit.items():
sections.append(f"- {key.replace('_', ' ').title()}: {value}")
# Recommendations
if 'recommendations' in result:
recs = result['recommendations']
sections.append("\nKey Recommendations:")
for rec in recs:
sections.append(f"- {rec}")
return "\n".join(sections)