agentic-system / space /recursive.py
Cascade Bot
Added Groq streaming support and optimizations - clean version
1d75522
"""Recursive reasoning implementation with advanced decomposition and synthesis."""
import logging
from typing import Dict, Any, List, Optional, Set, Tuple, Callable
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import asyncio
from collections import defaultdict
from .base import ReasoningStrategy
class SubproblemType(Enum):
"""Types of subproblems in recursive reasoning."""
ATOMIC = "atomic"
COMPOSITE = "composite"
PARALLEL = "parallel"
SEQUENTIAL = "sequential"
CONDITIONAL = "conditional"
ITERATIVE = "iterative"
class SolutionStatus(Enum):
"""Status of subproblem solutions."""
PENDING = "pending"
IN_PROGRESS = "in_progress"
SOLVED = "solved"
FAILED = "failed"
BLOCKED = "blocked"
OPTIMIZING = "optimizing"
@dataclass
class Subproblem:
"""Represents a subproblem in recursive reasoning."""
id: str
type: SubproblemType
query: str
context: Dict[str, Any]
parent_id: Optional[str]
children: List[str]
status: SolutionStatus
solution: Optional[Dict[str, Any]]
confidence: float
dependencies: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class RecursiveStep:
"""Represents a step in recursive reasoning."""
id: str
subproblem_id: str
action: str
timestamp: datetime
result: Optional[Dict[str, Any]]
metrics: Dict[str, float]
metadata: Dict[str, Any] = field(default_factory=dict)
class RecursiveReasoning(ReasoningStrategy):
"""
Advanced Recursive Reasoning implementation with:
- Dynamic problem decomposition
- Parallel subproblem solving
- Solution synthesis
- Cycle detection
- Optimization strategies
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize recursive reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Recursive reasoning specific parameters
self.max_depth = self.config.get('max_depth', 5)
self.optimization_rounds = self.config.get('optimization_rounds', 2)
# Problem tracking
self.subproblems: Dict[str, Subproblem] = {}
self.steps: List[RecursiveStep] = []
self.solution_cache: Dict[str, Dict[str, Any]] = {}
self.cycle_detection: Set[str] = set()
# Performance metrics
self.depth_distribution: Dict[int, int] = defaultdict(int)
self.type_distribution: Dict[SubproblemType, int] = defaultdict(int)
self.success_rate: Dict[SubproblemType, float] = defaultdict(float)
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Main reasoning method implementing recursive reasoning."""
try:
# Initialize root problem
root = await self._initialize_problem(query, context)
self.subproblems[root.id] = root
# Recursively solve
solution = await self._solve_recursive(root.id, depth=0)
# Optimize solution
optimized = await self._optimize_solution(solution, root, context)
# Update metrics
self._update_metrics(root.id)
return {
"success": True,
"answer": optimized["answer"],
"confidence": optimized["confidence"],
"decomposition": self._get_problem_tree(root.id),
"solution_trace": self._get_solution_trace(root.id),
"performance_metrics": self._get_performance_metrics(),
"meta_insights": optimized["meta_insights"]
}
except Exception as e:
logging.error(f"Error in recursive reasoning: {str(e)}")
return {"success": False, "error": str(e)}
async def _initialize_problem(self, query: str, context: Dict[str, Any]) -> Subproblem:
"""Initialize the root problem."""
prompt = f"""
Initialize recursive reasoning problem:
Query: {query}
Context: {json.dumps(context)}
Analyze for:
1. Problem type classification
2. Initial decomposition strategy
3. Key dependencies
4. Solution approach
Format as:
[Problem]
Type: ...
Strategy: ...
Dependencies: ...
Approach: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_problem_init(response["answer"], query, context)
async def _decompose_problem(self, problem: Subproblem, context: Dict[str, Any]) -> List[Subproblem]:
"""Decompose a problem into subproblems."""
prompt = f"""
Decompose problem into subproblems:
Problem: {json.dumps(self._problem_to_dict(problem))}
Context: {json.dumps(context)}
For each subproblem specify:
1. [Type]: {" | ".join([t.value for t in SubproblemType])}
2. [Query]: Specific question
3. [Dependencies]: Required solutions
4. [Approach]: Solution strategy
Format as:
[S1]
Type: ...
Query: ...
Dependencies: ...
Approach: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_subproblems(response["answer"], problem.id, context)
async def _solve_recursive(self, problem_id: str, depth: int) -> Dict[str, Any]:
"""Recursively solve a problem and its subproblems."""
if depth > self.max_depth:
return {"success": False, "error": "Maximum recursion depth exceeded"}
if problem_id in self.cycle_detection:
return {"success": False, "error": "Cycle detected in recursive solving"}
problem = self.subproblems[problem_id]
self.cycle_detection.add(problem_id)
self.depth_distribution[depth] += 1
try:
# Check cache
cache_key = f"{problem.query}:{json.dumps(problem.context)}"
if cache_key in self.solution_cache:
return self.solution_cache[cache_key]
# Check if atomic
if problem.type == SubproblemType.ATOMIC:
solution = await self._solve_atomic(problem)
else:
# Decompose
subproblems = await self._decompose_problem(problem, problem.context)
for sub in subproblems:
self.subproblems[sub.id] = sub
problem.children.append(sub.id)
# Solve subproblems
if problem.type == SubproblemType.PARALLEL and len(subproblems) >= self.parallel_threshold:
# Solve in parallel
tasks = [self._solve_recursive(sub.id, depth + 1) for sub in subproblems]
subsolutions = await asyncio.gather(*tasks)
else:
# Solve sequentially
subsolutions = []
for sub in subproblems:
subsolution = await self._solve_recursive(sub.id, depth + 1)
subsolutions.append(subsolution)
# Synthesize solutions
solution = await self._synthesize_solutions(subsolutions, problem, problem.context)
# Cache solution
self.solution_cache[cache_key] = solution
problem.solution = solution
problem.status = SolutionStatus.SOLVED if solution["success"] else SolutionStatus.FAILED
return solution
finally:
self.cycle_detection.remove(problem_id)
async def _solve_atomic(self, problem: Subproblem) -> Dict[str, Any]:
"""Solve an atomic problem."""
prompt = f"""
Solve atomic problem:
Problem: {json.dumps(self._problem_to_dict(problem))}
Provide:
1. Direct solution
2. Confidence level
3. Supporting evidence
4. Alternative approaches
Format as:
[Solution]
Answer: ...
Confidence: ...
Evidence: ...
Alternatives: ...
"""
response = await problem.context["groq_api"].predict(prompt)
solution = self._parse_atomic_solution(response["answer"])
self._record_step(RecursiveStep(
id=f"step_{len(self.steps)}",
subproblem_id=problem.id,
action="atomic_solve",
timestamp=datetime.now(),
result=solution,
metrics={"confidence": solution.get("confidence", 0.0)},
metadata={}
))
return solution
async def _synthesize_solutions(self, subsolutions: List[Dict[str, Any]], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
"""Synthesize solutions from subproblems."""
prompt = f"""
Synthesize solutions:
Problem: {json.dumps(self._problem_to_dict(problem))}
Solutions: {json.dumps(subsolutions)}
Context: {json.dumps(context)}
Provide:
1. Integrated solution
2. Confidence assessment
3. Integration method
4. Quality metrics
Format as:
[Synthesis]
Solution: ...
Confidence: ...
Method: ...
Metrics: ...
"""
response = await context["groq_api"].predict(prompt)
synthesis = self._parse_synthesis(response["answer"])
self._record_step(RecursiveStep(
id=f"step_{len(self.steps)}",
subproblem_id=problem.id,
action="synthesize",
timestamp=datetime.now(),
result=synthesis,
metrics={"confidence": synthesis.get("confidence", 0.0)},
metadata={"num_subsolutions": len(subsolutions)}
))
return synthesis
async def _optimize_solution(self, solution: Dict[str, Any], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize the final solution."""
prompt = f"""
Optimize recursive solution:
Original: {json.dumps(solution)}
Problem: {json.dumps(self._problem_to_dict(problem))}
Context: {json.dumps(context)}
Optimize for:
1. Completeness
2. Consistency
3. Efficiency
4. Clarity
Format as:
[Optimization]
Answer: ...
Improvements: ...
Metrics: ...
Insights: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_optimization(response["answer"])
def _update_metrics(self, root_id: str):
"""Update performance metrics."""
def update_recursive(problem_id: str):
problem = self.subproblems[problem_id]
self.type_distribution[problem.type] += 1
if problem.status == SolutionStatus.SOLVED:
self.success_rate[problem.type] = (
self.success_rate[problem.type] * (self.type_distribution[problem.type] - 1) +
problem.confidence
) / self.type_distribution[problem.type]
for child_id in problem.children:
update_recursive(child_id)
update_recursive(root_id)
def _get_problem_tree(self, root_id: str) -> Dict[str, Any]:
"""Get the problem decomposition tree."""
def build_tree(problem_id: str) -> Dict[str, Any]:
problem = self.subproblems[problem_id]
return {
"id": problem.id,
"type": problem.type.value,
"query": problem.query,
"status": problem.status.value,
"confidence": problem.confidence,
"children": [build_tree(child_id) for child_id in problem.children]
}
return build_tree(root_id)
def _get_solution_trace(self, root_id: str) -> List[Dict[str, Any]]:
"""Get the solution trace for a problem."""
return [self._step_to_dict(step) for step in self.steps
if step.subproblem_id == root_id or
any(step.subproblem_id == sub_id for sub_id in self.subproblems[root_id].children)]
def _get_performance_metrics(self) -> Dict[str, Any]:
"""Get current performance metrics."""
return {
"depth_distribution": dict(self.depth_distribution),
"type_distribution": {t.value: c for t, c in self.type_distribution.items()},
"success_rate": {t.value: r for t, r in self.success_rate.items()},
"cache_hits": len(self.solution_cache),
"total_steps": len(self.steps)
}
def _record_step(self, step: RecursiveStep):
"""Record a reasoning step."""
self.steps.append(step)
def _parse_problem_init(self, response: str, query: str, context: Dict[str, Any]) -> Subproblem:
"""Parse initial problem configuration."""
problem_type = SubproblemType.COMPOSITE # default
dependencies = []
metadata = {}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Type:'):
try:
problem_type = SubproblemType(line[5:].strip().lower())
except ValueError:
pass
elif line.startswith('Dependencies:'):
dependencies = [d.strip() for d in line[13:].split(',')]
elif line.startswith('Strategy:') or line.startswith('Approach:'):
metadata["strategy"] = line.split(':', 1)[1].strip()
return Subproblem(
id="root",
type=problem_type,
query=query,
context=context,
parent_id=None,
children=[],
status=SolutionStatus.PENDING,
solution=None,
confidence=0.0,
dependencies=dependencies,
metadata=metadata
)
def _parse_subproblems(self, response: str, parent_id: str, context: Dict[str, Any]) -> List[Subproblem]:
"""Parse subproblems from response."""
subproblems = []
current = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[S'):
if current:
subproblems.append(current)
current = None
elif line.startswith('Type:'):
try:
problem_type = SubproblemType(line[5:].strip().lower())
current = Subproblem(
id=f"{parent_id}_{len(subproblems)}",
type=problem_type,
query="",
context=context,
parent_id=parent_id,
children=[],
status=SolutionStatus.PENDING,
solution=None,
confidence=0.0,
dependencies=[],
metadata={}
)
except ValueError:
current = None
elif current:
if line.startswith('Query:'):
current.query = line[6:].strip()
elif line.startswith('Dependencies:'):
current.dependencies = [d.strip() for d in line[13:].split(',')]
elif line.startswith('Approach:'):
current.metadata["approach"] = line[9:].strip()
if current:
subproblems.append(current)
return subproblems
def _parse_atomic_solution(self, response: str) -> Dict[str, Any]:
"""Parse atomic solution from response."""
solution = {
"success": True,
"answer": "",
"confidence": 0.0,
"evidence": [],
"alternatives": []
}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Answer:'):
solution["answer"] = line[7:].strip()
elif line.startswith('Confidence:'):
try:
solution["confidence"] = float(line[11:].strip())
except:
pass
elif line.startswith('Evidence:'):
solution["evidence"] = [e.strip() for e in line[9:].split(',')]
elif line.startswith('Alternatives:'):
solution["alternatives"] = [a.strip() for a in line[13:].split(',')]
return solution
def _parse_synthesis(self, response: str) -> Dict[str, Any]:
"""Parse synthesis result from response."""
synthesis = {
"success": True,
"solution": "",
"confidence": 0.0,
"method": "",
"metrics": {}
}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Solution:'):
synthesis["solution"] = line[9:].strip()
elif line.startswith('Confidence:'):
try:
synthesis["confidence"] = float(line[11:].strip())
except:
pass
elif line.startswith('Method:'):
synthesis["method"] = line[7:].strip()
elif line.startswith('Metrics:'):
try:
synthesis["metrics"] = json.loads(line[8:].strip())
except:
pass
return synthesis
def _parse_optimization(self, response: str) -> Dict[str, Any]:
"""Parse optimization result from response."""
optimization = {
"answer": "",
"confidence": 0.0,
"improvements": [],
"metrics": {},
"meta_insights": []
}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Answer:'):
optimization["answer"] = line[7:].strip()
elif line.startswith('Improvements:'):
optimization["improvements"] = [i.strip() for i in line[13:].split(',')]
elif line.startswith('Metrics:'):
try:
optimization["metrics"] = json.loads(line[8:].strip())
except:
pass
elif line.startswith('Insights:'):
optimization["meta_insights"] = [i.strip() for i in line[9:].split(',')]
return optimization
def _problem_to_dict(self, problem: Subproblem) -> Dict[str, Any]:
"""Convert problem to dictionary for serialization."""
return {
"id": problem.id,
"type": problem.type.value,
"query": problem.query,
"parent_id": problem.parent_id,
"children": problem.children,
"status": problem.status.value,
"confidence": problem.confidence,
"dependencies": problem.dependencies,
"metadata": problem.metadata
}
def _step_to_dict(self, step: RecursiveStep) -> Dict[str, Any]:
"""Convert step to dictionary for serialization."""
return {
"id": step.id,
"subproblem_id": step.subproblem_id,
"action": step.action,
"timestamp": step.timestamp.isoformat(),
"result": step.result,
"metrics": step.metrics,
"metadata": step.metadata
}
def clear_cache(self):
"""Clear solution cache."""
self.solution_cache.clear()
def get_statistics(self) -> Dict[str, Any]:
"""Get detailed statistics about the reasoning process."""
return {
"total_problems": len(self.subproblems),
"total_steps": len(self.steps),
"cache_size": len(self.solution_cache),
"type_distribution": dict(self.type_distribution),
"depth_distribution": dict(self.depth_distribution),
"success_rates": dict(self.success_rate),
"average_confidence": sum(p.confidence for p in self.subproblems.values()) / len(self.subproblems) if self.subproblems else 0.0
}