agentic-system / space /neurosymbolic.py
Cascade Bot
Added Groq streaming support and optimizations - clean version
1d75522
"""Advanced neurosymbolic reasoning combining neural and symbolic approaches."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy
@dataclass
class NeuralFeature:
"""Neural features extracted from data."""
name: str
values: np.ndarray
importance: float
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class SymbolicRule:
"""Symbolic rule with conditions and confidence."""
name: str
conditions: List[str]
conclusion: str
confidence: float
metadata: Dict[str, Any] = field(default_factory=dict)
class NeurosymbolicReasoning(ReasoningStrategy):
"""
Advanced neurosymbolic reasoning that:
1. Extracts neural features
2. Generates symbolic rules
3. Combines approaches
4. Handles uncertainty
5. Provides interpretable results
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize neurosymbolic reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Neurosymbolic specific parameters
self.feature_threshold = self.config.get('feature_threshold', 0.1)
self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
self.max_rules = self.config.get('max_rules', 10)
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Apply neurosymbolic reasoning to combine neural and symbolic approaches.
Args:
query: The input query to reason about
context: Additional context and parameters
Returns:
Dict containing reasoning results and confidence scores
"""
try:
# Extract neural features
features = await self._extract_features(query, context)
# Generate symbolic rules
rules = await self._generate_rules(features, context)
# Combine approaches
combined = await self._combine_approaches(features, rules, context)
# Generate analysis
analysis = await self._generate_analysis(combined, context)
return {
'answer': self._format_analysis(analysis),
'confidence': self._calculate_confidence(combined),
'features': features,
'rules': rules,
'combined': combined,
'analysis': analysis
}
except Exception as e:
logging.error(f"Neurosymbolic reasoning failed: {str(e)}")
return {
'error': f"Neurosymbolic reasoning failed: {str(e)}",
'confidence': 0.0
}
async def _extract_features(
self,
query: str,
context: Dict[str, Any]
) -> List[NeuralFeature]:
"""Extract neural features from input."""
features = []
# Extract key terms
terms = query.lower().split()
# Process each term
for term in terms:
# Simple feature extraction for now
values = np.random.randn(10) # Placeholder for real feature extraction
importance = np.abs(values).mean()
if importance > self.feature_threshold:
features.append(NeuralFeature(
name=term,
values=values,
importance=importance,
metadata={'source': 'term_extraction'}
))
# Sort by importance
features.sort(key=lambda x: x.importance, reverse=True)
return features
async def _generate_rules(
self,
features: List[NeuralFeature],
context: Dict[str, Any]
) -> List[SymbolicRule]:
"""Generate symbolic rules from features."""
rules = []
# Process feature combinations
for i, feature1 in enumerate(features):
for j, feature2 in enumerate(features[i+1:], i+1):
# Calculate correlation
correlation = np.corrcoef(feature1.values, feature2.values)[0, 1]
if abs(correlation) > self.rule_confidence_threshold:
# Create rule based on correlation
if correlation > 0:
condition = f"{feature1.name} AND {feature2.name}"
conclusion = "positively_correlated"
else:
condition = f"{feature1.name} XOR {feature2.name}"
conclusion = "negatively_correlated"
rules.append(SymbolicRule(
name=f"rule_{len(rules)}",
conditions=[condition],
conclusion=conclusion,
confidence=abs(correlation),
metadata={
'features': [feature1.name, feature2.name],
'correlation': correlation
}
))
if len(rules) >= self.max_rules:
break
if len(rules) >= self.max_rules:
break
return rules
async def _combine_approaches(
self,
features: List[NeuralFeature],
rules: List[SymbolicRule],
context: Dict[str, Any]
) -> Dict[str, Any]:
"""Combine neural and symbolic approaches."""
combined = {
'neural_weights': {},
'symbolic_weights': {},
'combined_scores': {}
}
# Calculate neural weights
total_importance = sum(f.importance for f in features)
if total_importance > 0:
combined['neural_weights'] = {
f.name: f.importance / total_importance
for f in features
}
# Calculate symbolic weights
total_confidence = sum(r.confidence for r in rules)
if total_confidence > 0:
combined['symbolic_weights'] = {
r.name: r.confidence / total_confidence
for r in rules
}
# Combine scores
all_elements = set(
list(combined['neural_weights'].keys()) +
list(combined['symbolic_weights'].keys())
)
for element in all_elements:
neural_score = combined['neural_weights'].get(element, 0)
symbolic_score = combined['symbolic_weights'].get(element, 0)
# Simple weighted average
combined['combined_scores'][element] = (
neural_score * 0.6 + # Favor neural slightly
symbolic_score * 0.4
)
return combined
async def _generate_analysis(
self,
combined: Dict[str, Any],
context: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate neurosymbolic analysis."""
# Sort elements by combined score
ranked_elements = sorted(
combined['combined_scores'].items(),
key=lambda x: x[1],
reverse=True
)
# Calculate statistics
scores = list(combined['combined_scores'].values())
mean = np.mean(scores) if scores else 0
std = np.std(scores) if scores else 0
# Calculate entropy
entropy = -sum(
s * np.log2(s) if s > 0 else 0
for s in combined['combined_scores'].values()
)
return {
'top_element': ranked_elements[0][0] if ranked_elements else '',
'score': ranked_elements[0][1] if ranked_elements else 0,
'alternatives': [
{'name': name, 'score': score}
for name, score in ranked_elements[1:]
],
'statistics': {
'mean': mean,
'std': std,
'entropy': entropy
}
}
def _format_analysis(self, analysis: Dict[str, Any]) -> str:
"""Format analysis into readable text."""
sections = []
# Top element
if analysis['top_element']:
sections.append(
f"Most significant element: {analysis['top_element']} "
f"(score: {analysis['score']:.2%})"
)
# Alternative elements
if analysis['alternatives']:
sections.append("\nAlternative elements:")
for alt in analysis['alternatives']:
sections.append(
f"- {alt['name']}: {alt['score']:.2%}"
)
# Statistics
stats = analysis['statistics']
sections.append("\nAnalysis statistics:")
sections.append(f"- Mean score: {stats['mean']:.2%}")
sections.append(f"- Standard deviation: {stats['std']:.2%}")
sections.append(f"- Information entropy: {stats['entropy']:.2f} bits")
return "\n".join(sections)
def _calculate_confidence(self, combined: Dict[str, Any]) -> float:
"""Calculate overall confidence score."""
if not combined['combined_scores']:
return 0.0
# Base confidence
confidence = 0.5
# Get scores
scores = list(combined['combined_scores'].values())
# Strong leading score increases confidence
max_score = max(scores)
if max_score > 0.8:
confidence += 0.3
elif max_score > 0.6:
confidence += 0.2
elif max_score > 0.4:
confidence += 0.1
# Low entropy (clear distinction) increases confidence
entropy = -sum(s * np.log2(s) if s > 0 else 0 for s in scores)
max_entropy = -np.log2(1/len(scores)) # Maximum possible entropy
if entropy < 0.3 * max_entropy:
confidence += 0.2
elif entropy < 0.6 * max_entropy:
confidence += 0.1
return min(confidence, 1.0)